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Abstract: : the present study compare the PID Lead-lag tuning formulas  derived for two poles unstable second order plus 

dead time (SOPDT) processes based on IMC principle for disturbance estimator controller by Liu.et.al,S.Park et.al,and Lee 

et al. Respectively by using the matlab simulation.. 
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1.INTRODUCTION 

. The proportional integral derivative (PID) controller 

algorithm is undoubtedly the most adopted controllers for 

industrial plants , mainly due to their simplicity ,and they 

can assure satisfactory performances for wide range of 

processes. In general, two types of time delayed unstable 

process are the first–order delayed unstable processes 

(FODUP) and the second–order delayed unstable process 

(SODUP). Recently, tuning of controller for a time-delay 

unstable process has been an active area of research in the 

literature. 

Huang and Chen [1] suggested a three element structure, 

which is equivalent to a two-degree-of–freedom (2DOF) 

control scheme, for controlling the open loop unstable 

processes. However its method still gives about 100% 

overshoot to a setpoint change. S.Park et al [2] and Wang 

and Cai [3] had proposed a 2DOF control methods for 

several processes to overcome excessive overshoot and large 

settling time in setpoint response.M.Lee et al [4]. Had 

proposed a tuning formula which is simple and easy to 

memorize and also applicable to several classes of unstable 

process with time delay in a unique manner . 

Due to its internal instability, IMC structure cannot be 

directly applied for the controlling of unstable processes. it 

is very  powerful for controlling stable processes with time 

delay by the reason of the internal instability  Morari and 

Zafiriou[5].some modified IMC methods of 2DOF for 

controlling unstable processes with time delay had been 

developed by Huang and Chen [1],Tan et al.[6],Liu et al.[7]. 

a 2DOF control method based on Smith-predictor (SP) were 

proposed by {Kwak et al.[8], Majhi and Atherton [ 9],Zhang 

et al.[10]} to achieve a smooth nominal setpoint response 

without overshoot for first–order  unstable processes with 

time delay. 

Liu et al.[7] proposed  a control structure is shown in fig 1, 

where 𝐺𝑚0 is the delay free  part of the process model 𝐺𝑚  i.e 

.𝐺𝑚0𝑒
−𝜃𝑚 𝑠, and C is responsible for the setpoint tracking,  

 

 

and F is used for rejecting the load disturbances and 

therefore is called a disturbance estimator. And a controller 

𝐺𝑐  is employed for stabilizing the setpoint response. The 

design of 𝐺𝑐  enables it to contributes as a P or PD controller 

and converts the system an open–loop  for setpoint tracking. 

The analytical design procedure for both C and F is 

developed based on the 𝐻2 optimal performance objective 

[5], which is equivalent to the integral-squared–error (ISE) 

performance specification, both of the nominal setpoint 

response and load disturbance response can be quantitatively 

regulated to achieve the optimality. Moreover, both of C and 

F can be monotonously tuned on – line by a single adjustable 

parameter respectively to cope with the process uncertainty 

in practice and thus to make the best compromise between 

the nominal system performance and its robust stability 

,which is a dominant virtue of the proposed two-degree-of –

freedom control scheme.  
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                     Fig.1 Two–degree–of–freedom control structure 

 

2.Controller design procedure by T.Liu et al. 

2.1 Design  of stabilizing controller Gc 

The setpoint  transfer function is given by 

C 𝐺𝑝  

F 

𝐺𝑐  

𝐺𝑚𝑜  𝑒−𝜃𝑠  
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𝐻𝑟=
𝑌

𝑟𝑓
=

𝐶𝐺𝑝

1+𝐺𝑐𝐺𝑚𝑜
.
1+𝐹𝐺𝑚𝑜 𝑒−𝜃𝑚𝑆

1+𝐹𝐺𝑝
                                    (2.1)                                                                                           

In the nominal case (i.e,Gm=Gp) eq. 2.1 is simplified as 

𝐻𝑟=
𝑌

𝑟𝑓
=

𝐶𝐺𝑝

1+𝐺𝑐𝐺𝑚𝑜
                                                          (2.2)                                                                                 

Since the dead-time is discarded in the above characteristic 

equation of the nominal setpoint transfer function it certainly 

contributes to achieving a smooth servo response. 

The closed-loop transfer function for disturbance rejection is 

given by. 

Hdi=
𝑦

𝑑𝑖
=

𝐺𝑝

1+𝐹𝐺𝑝
                                                             (2.3)                                                                                                                   

Let the transfer functions of the  process model be. 

1.Gp=
𝐾𝑝𝑒−𝜃𝑠

 𝜏1𝑠−1 (𝜏2𝑠−1)
                                                     (2.4)                                                                                                         

Where Kp is the steady state gain 𝜏1  and 𝜏2 are the time 

constants and 𝜃 is the time delay of the process 

model.Choosing the stabilizing controller 𝐺𝑐=𝐾𝑑s,(𝐾𝑑 >
(𝜏1 + 𝜏2) 𝐾𝑝) .Thus the charaterstic equation of the setpoint 

response transfer function of equation (2.1). becomes 

   [(𝜏1𝑠 − 1) 𝜏2𝑠 − 1 + 𝑠𝐾𝑑𝐾𝑝 ]=0                           (2.5)                                                    

By employing the Routh-Hurwitz stability criterion, 

obtaining the tuning constraint for stabilizing the setpoint 

response.it gives 

      𝐾𝑑 > (𝜏1 + 𝜏2) 𝐾𝑝                                               (2.6)                                                                           

2.2 Setpoint tracking controller C 

By the ISE performance specification i;e min 𝑒 2
2 is used to 

design the setpopint tracking controller C.that is ,it should be 

implemented to achieve the system performance objective 

min 𝑊 𝑠 (1 − 𝐻𝑟(𝑠)) 2
2  ,where W is the setpoint weight 

function and can be chosen as 1/s for the rigorous step 

change of the setpoint input and load that occurs in 

industries.As for the unstable process type  Gp=
𝐾𝑝𝑒−𝜃𝑠

 𝜏𝑠−1 
  ,by 

using the v/v order all-pass pade approximation for the pure 

time delay term 𝑒−𝜃𝑠  ,obtain 

   Gp=
𝐾𝑝

 𝜏𝑠−1 
 
𝑄𝑣𝑣(−𝜃𝑠)

𝑄𝑣𝑣(𝜃𝑠)
                ,    where   

  𝑄𝑣𝑣(𝜃𝑠)= 
(2𝑣−𝑗 )!𝑣!

 2𝑣 !𝑗 ! 𝑣−𝑗  !
 𝜃𝑠 𝑗𝑣

𝑗=0                         (2.7) 

And v is chosen to be an integer large enough to guarantee 

that the introduced approximation error can be neglected in 

comparison with the process model mismatch in practice .by 

using 

  𝑊 𝑠 (1 − 𝐻𝑟(𝑠)) 2
2  = 

1

𝑠
 1 −

𝑘𝐶(𝑠)𝑄𝑣𝑣(−𝜃𝑠 )

 𝜏𝑠+𝑘𝑐𝑘−1 𝑄𝑣𝑣(𝜃𝑠)
  

2

2

 

                                       = 
𝑄𝑣𝑣(𝜃𝑠)

𝑠𝑄𝑣𝑣(−𝜃𝑠 )
−

𝑘𝐶(𝑠)

𝑠(𝜏𝑠+𝑘𝑐𝑘−1)
 

2

2

 

Note that 𝑄𝑣𝑣(0)=1 and all zero of 𝑄𝑣𝑣(−𝜃𝑠) are located in 

RHP. Utilizing the orthogonality property of 𝐻2 norm yield   

  𝑊 𝑠 (1 − 𝐻𝑟(𝑠)) 2
2 = 

 
𝑄𝑣𝑣 𝜃𝑠 −𝑄𝑣𝑣(−𝜃𝑠 )

𝑠𝑄𝑣𝑣(−𝜃𝑠 )
 

2

2

+ 
𝜏𝑠+𝑘𝑐𝑘−1−𝑘𝐶(𝑠)

𝑠(𝜏𝑠+𝑘𝑐𝑘−1)
 

2

2

                  (2.8) 

Minimizing the right side i;e letting its second term be zero 

.obtain the optimal controller 

𝐶𝑖𝑛 (𝑠)=
𝜏𝑠+𝑘𝑐𝑘−1

𝑘
                                                       (2.9)                                                                                                                                                     

However it is not proper and cannot be physically realized in 

practice . hence a first order low pass filter 

F=  
1

𝜆𝑓𝑠+1
                                                                          (2.10)                                                                                                                                                                  

then the practically optimal controller is obtained as 

C(s)= 
𝜏𝑠+𝑘𝑐𝑘−1

𝑘(𝜆𝑓𝑠+1)
 , where 𝜆𝑓  is the adjustable parameter and 

when it is tuned to zero .C recovers the optimality.By using 

the above procedure the setpoint tracking controller for the 

process 

Gp=
𝐾𝑝𝑒−𝜃𝑠

 𝜏1𝑠−1 (𝜏2𝑠−1)
     is  

C(s)= 
𝜏1𝜏2𝑠

2+ 𝑘𝑑𝑘−𝜏1−𝜏2 𝑠+1

𝑘(𝜆𝑓𝑠+1)2                                 (2.11)     

2.3 Disturbance Estimator Controller(F) 

This section describes disturbance estimator controller 

design based on on IMC Principle. The proposed modified 

IMC structure is shown in fig 1 . As per principle of IMC 
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controller the following condition should be satisfy for 

internal stabilization of closed loop system. 

(1) GIMC  is stable.                                                   (2.12)                                                                                                                                                       

 2     𝐺𝐼𝑀𝐶  𝐺𝑝  is stable.                                          (2.13)                                                                                                                                                  

(3)      (1-  𝐺𝐼𝑀𝐶  𝐺𝑝  )𝐺𝑃  is stable.                           (2.14)                                                                                                                                   

The process model  𝐺𝑚   is separated into the invertible or 

delay free  𝐺1 (s) and non invertible or delay part 𝐺𝑁1(𝑠) .i;e 

𝐺𝑚 (s)= 𝐺1(s)×𝐺𝑁1 .As per modified structure 𝐺1(s)=𝑃𝑚   and 

similarly 𝐺𝑁1 =𝑃𝐴    

2.3.1 IMC  Controller Design 

(1) Process Model with two unstable poles. 

To obtain a superior response for unstable processes. if the 

process model (𝐺𝑃) has unstable poles ,𝑢𝑝1……………………𝑢𝑝𝑚  , 

then the IMC controller 𝐺𝑖𝑚𝑐  should have zeros at 𝑢𝑝1 

...............𝑢𝑝𝑚  and also 1-𝐺𝑃𝐺𝑖𝑚𝑐   should have zeros at 

𝑢𝑝1..............𝑢𝑝𝑚 . 

Let the transfer function of the process model be. 

𝐺𝑃(s)=
𝐾𝑝𝑒

−Ө𝑠

 𝜏1𝑆−1  𝜏2 𝑆−1                                                (2.15)                                                                                         

First step of IMC controller design is to factor the process 

model into invertible and non invertible part. 

   𝐺1(s)=
𝐾𝑝

 𝜏1𝑆−1  𝜏2 𝑆−1                𝐺𝑁𝐼=𝑒
−𝜃𝑠               (2.16)                                                                      

The invertible and non invertible part of modified model.are. 

𝑃𝑚=
𝐾𝑝

 𝜏1𝑆−1  𝜏2 𝑆−1  𝑃𝐴=𝑒−Ө𝑠           (2.17)                                                                                                        

Second step is to define IMC Controller as  

𝐺𝐼𝑀𝐶=𝑃𝑚
−1(s)×f(s)                                                  (2.18)                                                                                                     

Where f(s) =
(𝑎2𝑠

2+𝑎1s+1)

 𝜆𝑓𝑠+1 4   is the low pass filter with 

adjustable time constant λ that reduce the effect of process 

model mismatch and improves the closed loop performance. 

𝐺𝐼𝑀𝐶=

 𝜏1 𝑠−1  𝜏2  𝑠−1  (𝑎
2  𝑆2+ 𝑎1 𝑠+1)

𝑘𝑝  𝜆𝑠+1 4
 (2.19)                                                                         

The first condition is satisfied automatically because 𝑃𝑚
−1 is 

the inverse of the model portion with the unstable poles or 

poles near zero.The second condition is satisfied because 

RHP poles of 𝐺𝑃  must be cancelled by the zeros of 𝐺𝐼𝑀𝐶  

.then the third condition can be fulfilled by designing the 

IMC filter f is to make the controller proper to cancel the 

unstable poles near zeros of 𝐺𝑃 .The RHP poles  of 𝐺𝑃 must 

be cancelled by the zeros of (1-𝐺𝑃𝐺𝑖𝑚𝑐   ) .The values of 𝑎1 

and 𝑎2 can be calculated with the help of equation.( 1-

𝐺𝑃𝐺𝑖𝑚𝑐  ) .this required 

[1-𝐺𝑃𝐺𝑖𝑚𝑐   ]|s=1 𝜏1 ,1 𝜏2  = 0                                        (2.20)                                                                                        

[ 1-   
 𝑒−𝜃𝑠  (𝑎

2  𝑆2+  𝑎1 𝑠+1)

𝑘𝑝  𝜆𝑠+1 4
  ]|s=1 𝜏1 ,1 𝜏2  = 0                  (2.21)                                                                    

The values  of 𝑎1 and 𝑎2 are obtained after simplification are 

given below. 

𝑎1= {𝜏1
2  (

𝜆𝑓

𝜏1
 +1 )4 𝑒𝜃/𝜏1  - 𝜏2

2  (
𝜆𝑓

𝜏2
 +1 )4 𝑒𝜃/𝜏2  +(𝜏2

2 -𝜏1
2 )}/(𝜏1-

𝜏2 )                                                                               (2.22)                                   

𝑎2= 𝜏1
2{ (

𝜆𝑓

𝜏1
 + 1)4  𝑒

𝜃
𝜏1
  - 1} - 𝑎1𝜏1                                (2.23) 

2.3.2  Disturbance Estimator Design. 

The two unstable poles impose a phase lead and time delay 

terms impose a phase lag.in the present work, to make the 

controller realizable a PID controller in series with a lead lag 

compensator  is considered.IMC controller is transform into 

PID lead-lag filter controller  

𝐹𝑖𝑚   (s)=
𝐺𝑖𝑚𝑐

1− 𝐺𝑝𝐺𝑖𝑚𝑐
                                                           (2.24)                                                                                                  

𝐹𝑖𝑚   (s)=
 𝜏1 𝑠−1  𝜏2 𝑠−1  (𝑎2 𝑠

2 +𝑎1 𝑠+1  )

𝑘 (𝜆𝑓 𝑠+1)4− 𝑎2  𝑠
2 +𝑎1  𝑠+1 𝑒−𝜃𝑠  

              (2.25)                                                             

However it is not difficult to discover that there exists a RHP 

zero-pole cancelling at s=1 𝜏  in eq.(2.24) which tends to 

cause the desired disturbance estimator to work unstably and 

cannot be removed directly .hence the mathematical 

maclaurin expansion series is here utilized to copy out the 

ideally desired disturbance estimator note that s=0 is a 

connotative pole of the ideally desired disturbance estimator 

in (2.24) which indicates that it has the property of 

integrating to eliminate the system output deviation from the 

setpoint value.therefore letting  𝐹𝑖𝑚 (s)=
𝑀 𝑠 

𝑠  it follows 

that. 
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𝐹𝑖𝑚 (s)=
1

𝑠
 𝑀 𝑠 + 𝑀, 0 𝑠 +

𝑀" 0 

2
 𝑠2 +  … . .

𝑀𝑖

𝑖!
 𝑠𝑖  + ⋯        

(2.26)                        

Obviously the first three terms of the above maclaurin 

expansion constitute exactly a standard PID controller in 

form of 

F=(𝐾𝐹 +
1

𝑇1𝑠
+ 𝑇𝐷𝑠)                                             (2.27)                                                                                             

  Where,  𝐾𝐹=𝑀, 0  ;𝑇1=
1

𝑀 , 0 
; 𝑇𝐷=

𝑀" 0 

2
 ;           (2.28)                                                              

2.4 simulation example 

Consider the process with doubly unstable poles studied by 

Tan et al.[6]                  

   GP = 
)1)(13(

2 3.0





ss

e s

 

It is a typical second-order delayed unstable process.by Tan 

et al[6] method, they have taken Kd = 3 and λ = 1.7θ = 0.51 

just for obtain the set-point tracking controller, that is, 

 

                      C(s) = 
2

2

)151.0(

5.05.1





s

ss
 

The disturbance estimator F in form of PID is tuned as KC = 

1.7638, 𝜏1  = 1.059, 𝜏2= 4.0642 (i.e. λ = 1.7θ = 0.51), and 

also for illustration, they also took N = 3 and λ = 1.5θ = 0.45 

to obtain the third order approximation controller by Using 

the analytical design formulae 

 

   F = 
3.82𝑠3+439.41𝑠2+232.66𝑠−129.79

0.53𝑠3+0.8𝑠2+100𝑠
 

 

By  adding a unit step change to the setpoint input at t=0 and 

an inverse unit step change of load disturbance to the 

process input at t=15, obtain the simulation results shown in 

fig 2 

 

                                                            Fig.2.1 

3 CONTROLLER DESIGN PROCEDURE BY LEE ET 

AL 

3.1 Design  of stabilizing controller Gc 

The setpoint  transfer function is given by 

𝐻𝑟=
𝑌

𝑟𝑓
=

𝐶𝐺𝑝

1+𝐺𝑐𝐺𝑚𝑜
.
1+𝐹𝐺𝑚𝑜 𝑒−𝜃𝑚𝑆

1+𝐹𝐺𝑝
                                (3.1)                                                                                          

In the nominal case (i.e,Gm=Gp) eq. 3.1 is simplified as 

𝐻𝑟=
𝑌

𝑟𝑓
=

𝐶𝐺𝑝

1+𝐺𝑐𝐺𝑚𝑜
                                                        (3.2)                                                                                                               

Since the dead-time is discarded in the above characteristic 

equation  of the nominal setpoint transfer function,it 

certainly contributes to achieving a smooth servo response. 

The closed-loop transfer function for disturbance rejection is 

given by. 

Hdi=
𝑦

𝑑𝑖
=

𝐺𝑝

1+𝐹𝐺𝑝
                                                            (3.3)                                                                                                                      

Let the transfer functions of the  process model be. 

1.Gp=
𝐾𝑝𝑒−𝜃𝑠

 𝜏1𝑠−1 (𝜏2𝑠−1)
                                                      (3.4)                                                                                                       

Where Kp is the steady state gain 𝜏1  and 𝜏2 are the time 

constants and 𝜃 is the time delay of the process 

model.Choosing the stabilizing controller 𝐺𝑐=𝐾𝑑s,(𝐾𝑑 >
(𝜏1 + 𝜏2) 𝐾𝑝) .Thus the charaterstic equation of the setpoint 

response transfer function of equation (3.4). becomes 

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time(sec)

Y
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    [(𝜏1𝑠 − 1) 𝜏2𝑠 − 1 + 𝑠𝐾𝑑𝐾𝑝 ]=0                           (3.5)                                                      

By employing the Routh-Hurwitz stability criterion, 

obtaining the tuning constraint for stabilizing the setpoint 

response. It gives 

   𝐾𝑑 > (𝜏1 + 𝜏2) 𝐾𝑝                                                   (3.6)                                                                           

3.2 Disturbance Estimator Controller(F) 

This section describes disturbance estimator controller 

design based on on IMC Principle. The proposed modified 

IMC structure is shown in fig 3.1. As per principle of IMC 

controller the following condition should be satisfy for 

internal stabilization of closed loop system. 

(1) GIMC  is stable. 

 2     𝐺𝐼𝑀𝐶  𝐺𝑝  is stable. 

(3)      (1-  𝐺𝐼𝑀𝐶  𝐺𝑝  )𝐺𝑃  is stable.  

The process model  𝐺𝑚   is separated into the invertible or 

delay free  𝐺1 (s) and non invertible or delay part 𝐺𝑁1(𝑠) .i;e 

𝐺𝑚 (s)= 𝐺1(s)×𝐺𝑁1 .As per modified structure 𝐺1(s)=𝑃𝑚   and 

similarly 𝐺𝑁1 =𝑃𝐴    

r                                          +     di                           +     do                                                                       

            +          - 

 

 

                                                  
                                  Fig 3.1 Modified IMC structure 

3.2.1 IMC  Controller Design 

(1) Process Model with two unstable poles. 

To obtain a superior response for unstable processes. if the 

process model (𝐺𝑃) has unstable poles ,𝑢𝑝1……………………𝑢𝑝𝑚  , 

then the IMC controller 𝐺𝑖𝑚𝑐  should have zeros at 𝑢𝑝1 

...............𝑢𝑝𝑚  and also 1-𝐺𝑃𝐺𝑖𝑚𝑐   should have zeros at 

𝑢𝑝1..............𝑢𝑝𝑚 . 

 

Let the transfer function of the process model be. 

𝐺𝑃(s)=
𝐾𝑝𝑒

−Ө𝑠

 𝜏1𝑆−1  𝜏2 𝑆−1  (3.7)                                                                                           

First step of IMC controller design is to factor the process 

model into invertible and non invertible part. 

r                                    +    di                             +    do                                                                                     

                 - 

 

  

 

                                              Fig .3.2 Modified IMC structure 

𝐺1(s)=
𝐾𝑝

 𝜏1𝑆−1  𝜏2 𝑆−1                𝐺𝑁𝐼=𝑒
−𝜃𝑠                        (3.8)                                                                 

The invertible and non invertible part of modified model.are. 

𝑃𝑚=
𝐾𝑝

 𝜏1𝑆−1  𝜏2 𝑆−1              𝑃𝐴=𝑒−Ө𝑠                             (3.9)                                                                          

Second step is to define IMC Controller as  

𝐺𝐼𝑀𝐶=𝑃𝑚
−1(s)×f(s)                                                           (3.10)                                                                                                    

Where f(s) =
(𝑎2𝑠

2+𝑎1s+1)

 𝜆𝑓𝑠+1 4   is the low pass filter with 

adjustable time constant λ that reduce the effect of process 

model mismatch and improves the closed loop performance. 

𝐺𝐼𝑀𝐶=

 𝜏1 𝑠−1  𝜏2  𝑠−1  (𝑎
2  𝑆2+ 𝑎1 𝑠+1)

𝑘𝑝  𝜆𝑠+1 4
                                  (3.11)                                                                        

The first condition is satisfied automatically because 𝑃𝑚
−1 is 

the inverse of the model portion with the unstable poles or 

poles near zero.The second condition is satisfied because 

RHP poles of 𝐺𝑃  must be cancelled by the zeros of 𝐺𝐼𝑀𝐶  

.then the third condition can be fulfilled by designing the 

IMC filter f is to make the controller proper to cancel the 

unstable poles near zeros of 𝐺𝑃 .The RHP poles of 𝐺𝑃 must 

be cancelled by the zeros of (1-𝐺𝑃𝐺𝑖𝑚𝑐   ). 

The values of 𝑎1 and 𝑎2 can be calculated with the help of 

equation.(3.11) .this required 

[1-𝐺𝑃𝐺𝑖𝑚𝑐   ]|s=1 𝜏1 ,1 𝜏2  = 0                                        (3.12)                                                                                        

Gimc Gp 

𝐺1(s) 𝐺𝑁(𝑠) 

𝐺𝐼𝑀𝐶  𝐺𝑃  

Pm 𝑃𝐴 
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[ 1-   
 𝑒−𝜃𝑠  (𝑎

2  𝑆2+  𝑎1 𝑠+1)

𝑘𝑝  𝜆𝑠+1 4
  ]|s=1 𝜏1 ,1 𝜏2  = 0                  (3.13)                                                                    

The values  of 𝑎1 and 𝑎2 are obtained after simplification are 

given below. 

𝑎1= {𝜏1
2  (

𝜆𝑓

𝜏1
 +1 )4 𝑒𝜃/𝜏1  - 𝜏2

2  (
𝜆𝑓

𝜏2
 +1 )4 𝑒𝜃/𝜏2  +(𝜏2

2 -𝜏1
2 )}/(𝜏1-

𝜏2 )                                                                              (3.14) 

𝑎2= 𝜏1
2{ (

𝜆𝑓

𝜏1
 + 1)4  𝑒

𝜃
𝜏1
  - 1} - 𝑎1𝜏1                             (3.15) 

3.2.2  Disturbance Estimator Design. 

The two unstable poles impose a phase lead and time delay 

terms impose a phase lag.in the present work, to make the 

controller realizable a PID controller in series with a lead lag 

compensator  is considered . IMC controller  is transform 

into PID lead-lag filter controller  

𝐹𝑖𝑚   (s)=
𝐺𝑖𝑚𝑐

1− 𝐺𝑝𝐺𝑖𝑚𝑐
                                                      (3.16)                                                                                                   

𝐹𝑖𝑚   (s)=
 𝜏1 𝑠−1  𝜏2 𝑠−1  (𝑎2 𝑠

2 +𝑎1 𝑠+1  )

𝑘 (𝜆𝑓 𝑠+1)4− 𝑎2  𝑠
2 +𝑎1  𝑠+1 𝑒−𝜃𝑠  

                      (3.17)                                                                    

Where 𝑒−𝜃𝑠  is the dead time  which is approximated by pade 

expansion  i;e 

𝑒−𝜃𝑠=
(1−𝜃𝑠2 )

(1+𝜃𝑠2 )
                                                               (3.18)                                                                                                       

𝐹𝑖𝑚 (s)=
 𝜏1 𝑠−1  𝜏2 𝑠−1   𝑎2 𝑠

2 +𝑎1 𝑠+1    1+𝜃𝑠
2
 

𝑘 𝜃+4𝜆𝑓−𝑎1 𝑠 1+
 𝑎1 𝜃 2−𝑎2+2𝜆𝑓 𝜃+6𝜆𝑓

2 

 𝜃+4𝜆𝑓−𝑎1 
𝑠1+

 𝑎2 𝜃
2 2+3𝜆𝑓

2 𝜃+4𝜆𝑓
3 

 𝜃+4𝜆𝑓−𝑎1 
𝑠2+

 2𝜆𝑓
3 𝜃+𝜆𝑓

4 

 𝜃+4𝜆𝑓−𝑎1 
𝑠3+

 𝜆𝑓
4  𝜃2 2  

 𝜃+4𝜆𝑓−𝑎1 
𝑠4 

 3.19              

          (3.19) 

However it is not difficult to discover that there exists a RHP 

zero-pole cancelling at s=1 𝜏  in eq.(3.12) which tends to 

cause the desired disturbance estimator to work unstably and 

cannot be removed directly .hence the mathematical 

maclaurin expansion series is here utilized to copy out the 

ideally desired disturbance estimator note that s=0 is a 

connotative pole of the ideally desired disturbance estimator 

in eq.( 3.12) which indicates that it has the property of 

integrating to eliminate the system output deviation from the 

setpoint value.therefore letting  𝐹𝑖𝑚 (s)=
𝑀 𝑠 

𝑠  it follows 

that. 

𝐹𝑖𝑚 (s)=
1

𝑠
 𝑀 𝑠 + 𝑀, 0 𝑠 +

𝑀" 0 

2
 𝑠2 +  ………… . .

𝑀𝑖

𝑖!
 𝑠𝑖  +

 ……                                                                         (3.20) 

Obviously the first three terms of the above maclaurin 

expansion constitute exactly a standard PID controller in 

form of 

F=Kc (1+1/𝜏1s+𝜏𝐷s)(1+αs)/(1+βs)                           (3.21)                                                                                      

    Where   

𝐾𝑐=
𝑎1

𝑘 𝜃+4𝜆𝑓−𝑎1 
  ; 𝜏1=𝑎1 ;𝜏𝐷=

𝑎2

𝑎1
 ; α=0.5𝜃 ; 

𝛽 =
 𝑎1 𝜃 2−𝑎2+2𝜆𝑓 𝜃+6𝜆𝑓

2 

 𝜃+4𝜆𝑓−𝑎1 
+(𝜏1 + 𝜏2)                          (3.22) 

3.3 Simulation example 

. Consider the process with doubly unstable poles studied by 

Liu et al. and Lee et al.                    

   GP = 
)1)(13(

2 3.0





ss

e s

 

It is a typical second-order delayed unstable process.by Liu 

et al.[7 ] and Tan et al. [6] method, they have taken Kd = 3 

and λ = 1.7θ = 0.51 just for obtain the set-point tracking 

controller, that is, 

 

                        C(s) = 
2

2

)151.0(

5.05.1





s

ss
 

 

The disturbance estimator F in form of PID is tuned as KC =  

1.7638, 𝜏1  = 1.8679, 𝜏2= 2.3042 (i.e. λ = 1.7θ = 0.51), and 

also for illustration, they also took N = 3 and λ = 1.5θ = 0.45 

to obtain the third order approximation controller by Using 

the analytical design formulae 

 

                        F = 
3.82𝑠3+439.41𝑠2+232.66𝑠−129.79

0.53𝑠3+0.8𝑠2+100𝑠
 

In our proposed method values of PID with series lead-lag 

filter parameters for disturbance estimator are  

 

 KC= 3.5671             𝜏1  = 1.491                           𝜏𝐷  = 1.3364         

a = 0.15                  0.1a = 0.01983                    β = 0.0058                            

For (λ=0.35) performance comparison, a unit step change to 

the set-point input at t = 10 is added. The simulation results 

are shown in fig   hethe  proposed disturbance estimator has 

a faster settling time and smaller peak than either the high 

order or PID controller 
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                                                   Fig.3.3 

 

4.controller design procedure by S.Park et al. 

 

                                           Disturbance d 

.set point filter                    controller 

      R                    -                                                                                           

 

                                      Fig 4.1 model by S.Park 

The closed loop transfer functions for designing the 

feedback controller 𝐺𝑐  are 

𝐶

𝑅
=

𝐺𝑐  𝐺

1+𝐺𝑐𝐺
                                                                         (4.1) 

𝐶

𝑑
=

𝐺𝐷  

1+𝐺𝑐𝐺
                                                                         (4.2) 

The controller 𝐺𝑐  should be designed to insure the stability 

of these two transfer functionsThe above eqs.can be 

reformulated as the IMC structure (Morari and 

Zafiriou,1989) by  

𝐶

𝑅
=

 𝐺𝑞

1+𝑞(𝐺−𝐺 )
                                                                    (4.3) 

𝐶

𝑑
=

(1−𝑞𝐺)𝐺𝐷  

1+𝑞(𝐺−𝐺  ) 
                                                                           

(4.4) 

If G=𝐺 , then
𝐶

𝑅
=Gq, 

𝐶

𝑑
=(1-q𝐺 )𝐺𝐷                                (4.5) 

Where q is the IMC controller  

Let us consider an unstable process model 

G(s)=𝑃𝑀 𝑠 𝑃𝐴(𝑠)                                                      (4.5) 

Where 𝑃𝑀 𝑠  contains the invertible portion of the model 

and  𝑃𝐴(𝑠) contains all the noninvertible portion .The 

invertible portions are the part of the model with stable poles 

and unstable poles. The noninvertible portions are the 

p[ortion of model with right–half–plane zeros and time 

delays .The following two conditions should be satisfied to 

stabilize the closed–loop response. 

1. if the process model G has unstable poles 

u𝑝1 ……………… .. u𝑝𝑘  q should have zeros at 

u𝑝1..............𝑢𝑝𝑘  

2 if the process model 𝐺𝐷has unstable poles 

du𝑝1, ……………… .. du𝑝𝑚 , (1-q𝐺 ) should have zeros at  

du𝑝1, …… du𝑝𝑚  

If these two conditions are satisfied, the closed –loop 

responses for both a setpoint change and a load change 

become stable 

 The IMC controller is set as q=𝑃𝑀
−1(𝑠)𝑓. Here, q has zeros 

at u𝑝1..............𝑢𝑝𝑘  because 𝑃𝑀
−1 𝑠  is the inverse of the 

model portion with the unstable poles . Thus, the first 

condition is satisfied .Then, through the filter design, the 

second condition should be satisfied .The filter for the IMC 

controller can be designed by two part ;𝑓𝑠 is the portion to 

make the controller proper ,and  𝑓𝑑  is the portion to cancel 

the unstable poles or stable poles near zero of  𝐺𝐷  

.f=𝑓𝑠𝑓𝑑            ,  𝑓𝑠=
1

 𝜆𝑠+1 𝑛
     , 𝑓𝑑 =

 𝛼𝑖𝑠
𝑖+1𝑚

𝑖=1

 𝜆𝑠+1 𝑚
            (4.6) 

Where n is chosen to make the controller realizable ,𝛼𝑖  are 

determine to cancel the unstable poles of 𝐺𝐷  and m is the 

number of unstable poles .f functions as a filter with 

adjustable time constant 𝜆  

|1-q𝐺 )|s= du𝑝𝑖 , ……………… .. du𝑝𝑚 , = 0                   (4.7) 

Where du𝑝𝑖 ,≠0 

Thus ,the IMC controller is 

.q=
𝑃𝑀
−1 𝑠 

 𝜆𝑠+1 𝑛
 ×    

 𝛼𝑖𝑠
𝑖+1𝑚

𝑖=1

 𝜆𝑠+1 𝑚
                                          (4.8) 

Then we get 

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time(sec)

Y

𝐹𝑟 
𝐺𝑐 G 

𝐺𝐷 
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𝐶

𝑅
=Gq=

𝑃𝐴  𝑠 

 𝜆𝑠+1 𝑛
 ×    

 𝛼𝑖𝑠
𝑖+1𝑚

𝑖=1

 𝜆𝑠+1 𝑚
                                 (4.9) 

𝐶

𝑑
=(1-Gq) 𝐺𝐷=(1-

𝑃𝐴  𝑠 

 𝜆𝑠+1 𝑛
 ×    

 𝛼𝑖𝑠
𝑖+1𝑚

𝑖=1

 𝜆𝑠+1 𝑚
) 𝐺𝐷           (4.10) 

The lead term ( 𝛼𝑖𝑠
𝑖 + 1𝑚

𝑖=1 ) in eqs (4.9) causes an 

overshoot in the closed-loop response to a setpoint change 

.This problem can be resolved if we add a setpoint filter 

Fr =
1

( 𝛼𝑖𝑠
𝑖+1𝑚

𝑖=1 )
                                                      (4.11) 

The classical feedback controller we need is obtained as 

 𝐺
𝐶=

𝑞

1−𝐺𝑞
                                                                 (4.12) 

Thus ,the controller 𝐺𝐶  is 

𝐺𝐶=

𝑃𝑀
−1 𝑠 

 𝜆𝑠+1 𝑛
 ×    

 𝛼𝑖𝑠
𝑖+1𝑚

𝑖=1
 𝜆𝑠+1 𝑚

1−
𝑃𝐴 𝑠 

 𝜆𝑠+1 𝑛
 ×    

 𝛼𝑖𝑠
𝑖+1𝑚

𝑖=1
 𝜆𝑠+1 𝑚

                                       (4.13) 

The controller 𝐺𝐶  can be approximated to a PID controller 

by first noting that it can be expressed as 

𝐺𝐶=f(s)/s                                                                (4.14) 

Expanding 𝐺𝐶(s) in a Maclaurin series in s gives 

𝐺𝐶(s)=
1

𝑠
(f(0)+𝑓 ,(0)𝑠+

𝑓" 0   

2!
𝑠2+.................)       (4.15) 

The first three terms of the above expansion can be 

interpreted as the standard PID controller given by 

𝐺𝐶(s= Kc(1+
1

𝜏1𝑠
+𝜏𝐷𝑠)  ,where  Kc  = 𝑓

,(0) , 𝜏1=𝑓 ,(0) (f(0)  

, 𝜏𝐷=
𝑓" 0   

2!
𝑓 ,(0)                                                 (4.16) 

𝜏1≥0;   𝜏𝐷≥0 

4.2 PID controller setting 

Unstable process model with two unstable poles and time 

delay 

The process model is 

𝐺 𝑠 = 𝐺𝐷(s)=
𝐾𝑝𝑒

−Ө𝑠

 𝜏1𝑆−1  𝜏2 𝑆−1                                (4.17) 

And from eq.4.6 

  𝑓𝑠=
1

 𝜆𝑠+1 2  , 𝑓𝑑=(𝛼2𝑠
2 + 𝛼1𝑠 + 1)/  𝜆𝑠 + 1 2. 

The IMC controller becomes  

.q= 𝜏1𝑆 − 1  𝜏2 𝑆 − 1 (𝛼2𝑠
2 + 𝛼1𝑠 + 1)/ 𝐾        (4.18). 

Then we get 

𝐺𝐶(𝑠)=
 𝜏1𝑆−1  𝜏2 𝑆−1 𝛼2𝑠

2+𝛼1𝑠+1) 

𝐾  𝜆𝑠+1 4−𝑒−𝜃𝑠  (𝛼2𝑠
2+𝛼1𝑠+1) 

                       (4.19) 

Expanding 𝐺𝐶(𝑠) in a Maclaurin series in s gives  

Kc =
𝜏1

𝐾(4𝜆+𝜃−𝛼1)
                                                     (4.20) 

𝜏1=-𝜏1-𝜏2+𝛼1-
6𝜆2−𝛼2+𝛼1𝜃−𝜃

2/2

4𝜆+𝜃−𝛼1
                            (4.21) 

𝜏𝐷=
𝛼2+𝜏1𝜏2− 𝜏1+𝜏2 𝛼1− 4𝜆3+𝜃𝛼2+

𝜃3

6
−𝛼1𝜃

2/2 / 4𝜆+𝜃−𝛼1 

𝜏1
-

6𝜆2−𝛼2+𝛼1𝜃−𝜃
2/2

4𝜆+𝜃−𝛼1
                                                    (4.22) 

Where 𝛼1,𝛼2 values are calculated by solving  

1-
(𝛼2𝑠

2+𝛼1𝑠+1)𝑒−Ө𝑠

(𝜆𝑠+1)4 |s=
1

𝜏1
,

1

𝜏2
  = 0                              (4.23) 

With this controller ,the transfer function of the setpoint 

change is given by 

𝐶

𝑅
 =

(𝛼2𝑠
2+𝛼1𝑠+1)𝑒−Ө𝑠

(𝜆𝑠+1)4                                                   (4.24) 

Therefore ,if only a PID controller is used ,the closed –loop 

response is at best ,and the lead term  𝛼2𝑠
2 + 𝛼1𝑠 + 1 causes 

an overshoot .adding a setpoint filter fr=1 𝛼2𝑠
2 + 𝛼1𝑠 + 1   

results the closed –loop transfer function 

𝐶 𝑅′ =)𝑒−Ө𝑠 (𝜆𝑠 + 1)4 . 

Simulation example 

Consider an unstable process with two unstable poles as 

follows  

𝐺 𝑠 = 𝐺𝐷(s)=
𝐾𝑝𝑒

−Ө𝑠

 𝜏1𝑆−1  𝜏2 𝑆−1  
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The filter time constant 𝜆 was chosen as 𝜆=0.45, the tuning 

parameters are 𝐾𝐶=2.3153, 𝜏1 = 1.7843,𝜏𝐷=1.8859, setpoint 

filter is Fr=1/(3.252𝑠2 + 1.7147𝑠 + 1).fig show the closed –

loop response of the unstable process given by eq.to a unit 

step change in setpoint and load. 

 

                                        Fig.4.2 

5.COMPARISION OF SIMULATION MODEL BY LEE 

ET.AL,LIU ET.AL, S.PARK 

 

                                           Fig.5 

6. CONCLUSION 

The simulation result shown in Fig.5 .the model proposed by 

Lee has a faster settling time and smaller peak than either the 

high order or PID controller by Liu[7]and S.Park[2] 

                             REFERENCES 

1. H.P  Huang and C.C Chen “ control –system synthesis for  open 
–loop unstable process with time delay “ IEE process –control  theory and 

Application, Vol.144, pp.334,1997 

2. S.Park,Y.Lee and J.Lee “ PID controller tuning for integrating 
and unstable process with time delay” Chem.Eng.Sci., Vol. 55,pp 3481-

3493,2000. 

3. Y.G Wang and W.J Cai “ Advanced PID tuning for integrating 
and unstable processes gain and phase margin specifications” Ind 

Eng.Chem.Res.Vol.41,No.12, pp 2910-2914,2002. 

4.  M.Shamsuzzoha and Moonyong Lee “Enhanced disturbance 
rejection for open –loop unstable process with time delay” ISA Transaction 

48(2009) 237-244. 

5. M.Morari and E Zafiriou “Robust process control”, Prentice-
Hall: Englewood  Cliffs ,NJ,1989. 

6. W.Tan,H.J.Marquez and T.Chen , “IMC design for unstable 

processes with time delays,” J.process control,Vol 13,pp.203-213,2003. 
7. T.Liu, W.Zhang and D.Gu, “ Analytical designof 2DOF control 

scheme for open loop unstable process with time delay” J.Process Control, 

Vol 15,pp. 559-572,2005. 
8. Kwak HJ, Sung SW, Lee IB, Park JY. Modified Smith predictor 

with a new structure for unstable processes. Ind Eng Chem Res 1999; 
9. Majhi S, Atherton DP.obtaining controller parameter for a new 

Smith Predictor using autotuning .Automatica 2000; 

10. Zhang WD,GU D, Wang W, Xu x.quantitative performance 
design of a modified SP for unstable processes with time delay. Ind Eng 

Chem Res 2004; 

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (sec)

Y

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (sec)

Y

 

 

Lee et al.

Liu et al.

S.park et al

http://www.ijireeice.com/

