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Abstract: The presence of noise in images can significantly impact the performances of computer vision algorithms 

and digital image processing. Thus, noise should be removed to improve the robustness of the entire process. Denoising 

or noise reduction is one of the most essential processes for digital image processing. The main goal of denoising is 

how to remove the noise while keeping the important features of the image. The denoising methods should not alter the 

original image, most denoising methods degrade or remove the fine details. This paper p  resents an Adaptive Image 

Denoising IP-core (AIDI) for real time applications. Here core first estimates the level of noise in the input image, then 

applies an adaptive Gaussian smoothing filter to remove the estimated noise. The filtering parameters are computed on-

the-fly, adapting them to the level of noise in the image and pixel by pixel to preserve image information (e.g., edges or 

corners). The noise estimation in an image is also a key factor since to be more effective, algorithms and denoising 

filters should be tuned to the actual level of noise. Moreover, the complexity of these algorithms brings a new challenge 

in real-time image processing applications, requiring high computing capacity. In this context, hardware acceleration is 

crucial, and Field Programmable Gate Arrays (FPGAs) best fit the growing demand of computational capabilities.  

The architecture uses FPGA, it shows the improvements with respect to a standard static filtering approach. 

 

Keywords: Gaussian noise, noise estimation, Laplacian operator, noise reduction, edge detection. Adaptive Gaussian 

filtering, Gaussian noise, denoising. 

 

I. INTRODUCTION 

This Nowadays, computer vision is one of the most 

evolving areas of Information Technology (IT). Image 

processing is widely used in several application fields, 

such as aerospace, medical, or automotive. In every 

computer vision application, one or more images are taken 

from a camera, and processed, in order to extract 

information used for edge detection, features 

identification, or image registration. 

 

Image processing is widely used in many fields, such as 

medical imaging, scanning techniques, printing skills, 

license plate recognition, face recognition, and so on. 

Unfortunately, the technology provided by modern Charge 

Coupled Device (CCD) sensors suffers from noise. In a 

CCD camera there are many potential sources of noise, 

such as Shot Noise, Dark current, Read Noise and 

Quantization noise are some of examples. CCD 

manufacturers typically Combine these on-chip noise 

sources, and express them in terms of a number of 

electrons Root Mean Square (RMS). However, in image 

the level of noise does not depend on the adopted sensor 

only but also depends on the environmental condition as 

well. Noise estimation and removal are thus necessary to 

improve the effectiveness of image processing algorithms.  

To estimate how an image is affected by noise, a well 

characterized noise model must be defined. Since noise 

sources are random in nature, their values must be handled  

 

as random variables, described by probabilistic functions. 

In fact, Dark Current, proportional to the integration time  

and temperature, is modeled as a Gaussian distribution, 

Shot and Read Noise, caused by on-chip output amplifiers, 

are modeled as Poisson distributions, and, detector 

malfunction or hot pixels are modeled by an impulsive 

distribution. 

 

In most cases, all Gaussian and Poisson distributed noises 

are combined, approximating the image noise with an 

equivalent additive zero-mean white Gaussian noise 

distribution, characterized by a variance 𝜎n
2
. 

 

While the impulsive noise can be removed in a relatively 

simple way, Gaussian noise removal is a non trivial task, 

since, to be more effective, the filter must be adapted to 

the actual level of noise in the image. Noise estimation is 

therefore a fundamental task. Nonetheless, in modern real-

time systems, a software implementation of these complex 

algorithms cannot be used, since it does not meet real-time 

constraints. In this context, FPGAs are a good choice to 

hardware accelerate the noise estimation and removal 

tasks. This enables subsequent image processing 

algorithms to fully exploit the remaining timing budget. 

This paper presents AIDI: an Adaptive Image Denoising 

FPGA-based IP-core for real-time applications. The core 

first estimates the level of noise in the input image. It then 
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applies an adaptive Gaussian smoothing filter to remove 

the estimated Gaussian noise. The filtering parameters are 

computed onthe-fly, adapting them to the level of noise of 

the current image. Furthermore, the filter uses local image 

information to discriminate whether a pixel belongs to an 

edge in the image or not, preserving it for subsequent edge 

detection or image registration algorithms. An FPGA-

based implementation has been targeted, since FPGAs are 

increasingly used in real-time systems as hardware 

accelerators, even in mission-critical applications, such as 

aerospace field.The paper is organized as follows: Section 

II gives an overview on noise estimation and removal 

approaches, and their existing hardware implementations. 

Section III presents the hardware architecture of the 

proposed IP-core, while Section IV shows the 

experimental results. Finally, in Section V, some 

conclusions are drawn. 

 

II.  RELATED WORK 
Noise estimation methods, targeting additive white 

Gaussian noise, can be classified in two categories: filter-

based and block-based. With the former method, the noisy 

image is filtered by a low pass filter to suppress image 

structures (e.g., edges), and then the noise variance is 

computed based on the difference between the filtered and 

the noisy image (called difference image)[1]. With the 

latter method, the image is split into cells, and the noise 

variance is computed identifying the most homogeneous 

cells[2][3]. 

 

 Proved that filter-based methods work better than block 

based methods at high noise levels, but they are complex 

and require high computational load. In addition, filter-

based methods assume the difference image as the noise 

affecting the input image, but this assumption is not true 

for images with several structures or details. 

 

To tackle this problem, [1] estimates noise by combining a 

simple edge detector and a low-pass filter. The proposed 

algorithm has good performances even with high detailed 

images at different level of noise, and it requires only 

simple mathematical operations (i.e., convolutions and 

averaging operations). 

 

Denoising methods can be based on linear or on non-linear 

models. On the one hand, median and Gaussian filters are 

commonly used to remove noise, offering a good trade-off 

between complexity and effectiveness in smoothing out 

noise. These methods work well in the flat regions of 

images, but they do not well preserve the image edges, 

that appear smoothed. On the other hand, denoising 

methods based on non-linear models (e.g., wavelets-based 

methods) can handle edges in a better way, but are more 

complex, and often not applicable in real-time image 

processing for high resolution images. 

 

In [4]  the authors propose an adaptive Gaussian filter 

which tries to limit the edge smoothing problem of 

standard Gaussian filtering methods. A large filter 

variance is effective in smoothing out noise, but, at the 

same time, it distorts those parts of the image where there 

are abrupt changes in pixel intensity. This can lead to edge 

position displacement, vanishing of edges, or phantom 

edges (i.e., artifacts in the image). 

 

To address this problem, [4] adapts the filter variance to 

the local characteristics of the input image. It makes use of 

the local variance of the image, and the estimated 

Gaussian noise in the image. It has been proven that this 

adaptive filtering approach succeeds in preserving edges 

and features of an image, even in presence of noise, better 

than a static filtering approach.  

 

Hardware implementations of denoising methods have 

been widely investigated. [5] propose FPGA-based 

implementations of median filters. However, median 

filtering is strictly recommended for impulse noise 

removal (i.e., Salt and-Pepper noise), while it does not 

provide good results when the image is affected by 

Gaussian noise. An FPGA-based implementation of a 

Gaussian smoother has been proposed in[6], but its main 

drawback is the non-adaptivity of the filter, which results 

in edge smoothing. [7]propose implementations of 

wavelet-based and bilateral filter image denoisers, 

respectively. However, none of these works account for a 

noise estimation module to be included into the hardware 

architecture.  

 

In Cartesian Genetic Programming (CGP) image filters 

have been proposed. CGP-based filters are able to reduce 

the noise on the image while preserving edges. Moreover, 

they can be efficiently implemented on FPGAs requiring 

few hardware resources. However, since CGP filters are 

based on evolutionary algorithms, they require a lot of 

iterations to provide the filtered image, making them 

inappropriate for rea ltime applications. Hardware 

implementations of noise estimators have not been deeply 

investigated by the research community. The proposed 

architecture wastes a lot of hardware and memory 

resources to perform sorting and logarithmic operations. 

Moreover a noise removal module is not included in the 

architecture. The presented paper introduces a 

comprehensive FPGA-based architecture, including noise 

estimation and noise removal in a single IP-core. It targets 

the estimation and removal of additive white Gaussian 

noise. The chosen adaptive Gaussian filtering approach 

ensures edge preserving capability, while the noise 

estimation algorithm is able to estimate the variance of 

Gaussian noise with high accuracy[1][4]. 

 

The proposed adaptive FPGA-based architecture ensures 

real time performances, even with 1024x1024 pixels grey-

scale images, with 8 bit-per-pixel resolution (bpp). 

Nonetheless, the proposed architecture uses few hardware 

resources, allowing to include, in the same device, 

additional image processing algorithms. 
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III.  AIDI ARCHITECTURE 
AIDI is a highly parallelized and pipelined FPGA-based 

IPcore that gets in input, through a 32-bit interface, a 

1024x1024 grey scale image (e.g., from a CCD camera) 

with 8 bpp and outputs a filtered pixel each clock cycle, 

through a 25 bit interface. Input pixels are received as a set 

of 32-bit packets (i.e., 4 pixels are received in a clock 

cycle), without any header or padding bit. 

 

In order to self-adapt the Gaussian filter to the current 

input image, AIDI applies the approach presented in [4]. 

This approach can be mathematically formalized as 

follow: 

     (1) 

where 𝜎2
f (x, y) is the variance of the Gaussian filter to be 

applied at the pixel of the input image in (x, y) position, 

𝜎2
n is the estimated white Gaussian noise variance of the 

input image, k is a constant equal to 1.5, and 𝜎2
OI (x, y) is 

the local variance of the image without noise (i.e., noise 

free image) in (x,y) pixel, that can be computed as: 

𝜎2
OI (x, y)=  𝜎2

NI (x, y) - 𝜎n
2
          (2) 

 

where𝜎2
NI (x, y) is the local variance associated with the 

noisy input pixel image. Basically, this algorithm adapts 

the variance of the Gaussian filter 𝜎2
f (x, y)pixel-by-pixel, 

in order to strongly reduce the noise in smoothed image 

areas (i.e., low image local variance 𝜎2
OI (x, y)), and to 

reduce the distortion in areas with strong edges (i.e., high 

𝜎2
OI (x, y)). In other words, 𝜎2

f (x, y)is increased in the 

first case and decreased in the second one. 𝜎2
f(x, 

y)canrange from valuesnear0 to 1.5. 

 

AIDI includes three main modules (Fig.1): the Local 

Variance Estimator (LVE), the Noise Variance Estimator 

(NVE) and the Adaptive Gaussian Filter. 

 

First, the input pixels feed the NVE and, in parallel, they 

are stored into an external memory through a 32-bit 

interface. 

 

The NVE, exploiting the algorithm presented in, computes 

the Gaussian noise variance (i.e., 𝜎2
n) affecting the input 

image. The selected algorithm involves highly 

parallelizable operations. 

 
Figure 1: AIDI Internal architecture 

 It first requires to extract the strongest edges (or features) 

of the input image exploiting the Sobel features extractor. 

This task is performed using two 2D convolutions between 

the input image and the Sobel kernels (Eq. (3)). 
 

-1    -2    -1 

Gx= I (x, y)*     0    0     0 

1     2      1      , 

                               -1   0    1 

Gy= I (x, y) *     -2    0    2 

                                1     0    1            

G=Gx+   Gy        (3) 

 

Where I(x; y) is the pixel intensity in the (x, y) position of 

the input image, and G is the edge map associated with the 

input image. The strongest edges are then extracted by 

selecting the highest 10% values inside G. example (as 

shown in Fig.2)   

   
Figure 2: Detect edges using the Sobel method 

 

Finally, 𝜎2
n can be computed as: 

σ
2

n  = C. ∑  I(x, y)  ∗ N   2
                        (4) 

Where N is the 3x3 Laplacian kernel and C is a constant 

defined as: 

                      (5) 

where W and H are the width and height of the input 

image, respectively (in our architecture W=H = 1024).  

Fast Method for Image Noise Estimation Using Laplacian  

Operator: 
 

We assume that the image is corrupted by additive, white 

Gaussian noise with unknown deviation 𝜎n, 

and the model is given by: 

I n(x, y I (x, y n(x, y)                                    (6) 
 

where x and y are the vertical and horizontal  coordinates 

of a pixel, In(x, y), I(x, y) and n(x, y) are the noisy image, 

the original image and the additive Gaussian noise 

respectively. Our goal is to estimate the standard deviation 

σnof the noise from the noisy image. 

 
Figure 3: Block diagram of “fast estimation” 
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The first step of the “Fast Estimation”  method is to 

suppress the image structures by the following Laplacian 

operator: 

           1     -2   1 

N =    -2      4 -2                                                         (7) 

           1     -2         1 

 

Then the standard deviation of the noise can be using eq. 

(4) 

 

When the computation of 𝜎2
n is completed, the overall 

image is read out from the external memory and provided 

in input to the LVE. The LVE computes the local variance 

associated with each input pixel 𝜎2
NI (x, y). The local 

variance of a pixel is defined as the variance calculated on 

an image window (i.e. patch) centeredaround the 

considered pixel. (As shown in Fig. 4) 

 
Figure 4: Pixel neighboring comparison 

 

To perform this task, LVE applies the following formula:                                   

σ
2

NI(x,y)= S - 
1

T
. ∑  I(x, y)   2

                         (8) 

 

where T is a constant equal to the number of elements in 

the patch (a 11x11 pixels patch has been selected in our 

architecture to ensure an accurate local variance 

estimation), and S is equal to: 

S =   
1

T
. ∑  I(x, y)                                            (9) 

 

Since LVE has a pipelined internal architecture, at each 

clock cycle it provides in output the 𝜎2
NI (x, y) and the 

related pixel values composing the patch. 

 

The Adaptive Gaussian Filter receives the 𝜎2
ncomputed by 

NVE, and the outputs of the LVE. The filter computes 

equations (1) and (2), in order to find the best filter 

variance value (i.e., 𝜎2
f (x, y)). After this computation, this 

module applies the Gaussian smoothing on the current 

received pixel. 
 

The Gaussian filtering operation is performed by means of 

a 2D-convolution on the input image with a 11x11 pixels 

Gaussian kernel. The selected filter size allows to 

accurately represent the Gaussian function with variance 

values in the selected range (i.e., (0, 1.5], as described 

before). The values of the Gaussian kernel are adapted 

pixel-by-pixel, depending on the computed 𝜎2
f (x, y), as 

described in Subsection IV -C. In the following 

subsections all the hardware implementation details of the 

AIDI modules are deeply analyzed. 

 

A. Noise Variance Estimator 

The NVE module receives the input image through a 32-

bit interface (4 pixels are received at each clock cycle), 

and it provides in output the estimated white Gaussian 

noise variance 𝜎2
n affecting the image. The internal 

architecture of NVE is shown in Fig. 5. 

 
Figure 5: NVE Internal architecture 

 

Since NVE must perform operations involving patches 

(see Sec.IV), in order to speed up the computation, the 

input pixels are stored exploiting a circular buffering 

approach, implemented by the Smart Image Window 

Buffer (SIWB) of Fig. 6. 

 
Figure 6: SIWB Internal architecture 

 

Input pixels, grouped in 32-bit packets, are sent to the 

IWB writer that serializes the pixels using a FIFO, and 

stores them inside the Image Window Buffer (IWB in Fig. 

3). IWB is composed of 3 FPGA internal Block-RAMs 

(BRAMs), each devoted to store an entire image row. 3 

BRAMs are used since pixels from 3 different rows of the 

image are needed at the same time, to perform the required 

operations on a 3x3 pixels image patch. Initially, the IWB 

writer fills each BRAM, starting from the top one to the 

bottom one. During a convolution operation image borders 

are not processed [8], thus, when all BRAMs are filled, the 

pixels necessary to process the second row of the image 

are available to be read-out. While the second row is being 

processed, pixels associated with the fourth row of the 

image are received. They overwrite the content of the 

BRAM that contains the oldest row (i.e., the first row in 

this case). 
 

In general, while the i-th image row is being processed, 

pixels of the (i+2)-th image row are being received. The 

IWB writer stores received pixels in the BRAM that 
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contains the ones associated to the (i-1)-th image row (i.e., 

IWB works as a circular buffer). This buffering approach 

leads to two advantages: (i) when the 3 BRAMs are filled, 

all required pixels to compute a row are available, 

allowing a pixel every clock cycle to be processed; (ii) it 

completely avoids any access to the external memory, 

because when an image row in thebuffer is overwritten by 

a new one, the data of the replaced row are not needed for 

the following computations. 

 

The pixels of the image, associated with the current 3x3 

patch, are read-out from the IWB by the IWB reader. IWB 

reader is a Finite-State-Machine (FSM) charged of reading 

out the pixels from the IWB and providing them to the 3x3 

Register window in the right order.Basically, when all 

pixels needed to process the i-th image row (i.e., pixels 

from the i-1th row to i+1th row) are stored in the IWB, the 

IWB reader can start to read a pixel from each BRAM of 

the buffer. Read pixels are loaded into the first column of 

the 3x3 

 

8-bit FFs Register Window. Each row of the 3x3 Register 

windows is a shift register. Thus, at the next clock cycle, 

when another column of 3 pixels is loaded, the previous 

column is shifted to the next position. Whenever the 3x3 

Register windows is filled with all the pixels of a patch, 

they are provided in output of the SIWB. It is important to 

highlight that the IWB writer loads the image rows in the 

IWB as in a circular buffer. Thus, the image rows are 

stored in the IWB in an out-of-order manner (w.r.t. the 

original image). 

 

Consequently, IWB reader must rearrange the position of 

the pixels in order to store them in the 3x3 Register 

windows with the same order as in the original image. In 

this way, at each clock cycle, the pixels of the current 

patch are provided in output of the SIWB in the right 

order. 

 

The outputs of SIWB feed the two main modules of LVE: 

the Sobel Extractor (SE in Fig. 5), and the Laplacian. 

Basically, SE extracts the features from the input image 

and asserts its output flag only if the currently processed 

pixel is one of the 10% strongest features in the image. 

 

First, SE computes the operations reported in Eq. (3). The 

Gx and Gy modules receive in input the pixels of the 

current 3x3 patch and compute the 2D convolutions 

between the input pixels and the Sobel kernels.  

 

These two modules are internally implemented as a 

MUL/ADD tree composed of 6 multipliers (only 6 values 

are different from zero in Sobel kernels) and 3adder 

stages, for a total amount of 5 adders. Moreover, since the 

Sobel kernel factors can only be equal to 1, -1, 2 or -2, in 

order to reduce the area occupation, the multipliers are 

replaced by a wire, a sign inverter, a shifter, and a sign 

inverter & shifter, respectively. 

 

The outputs of the Gx and Gy are then added together, 

through a 16 bit adder, to find the G value (see Eq. (3)). 

The computed G is compared with a threshold in order to 

set the SE output only if the current pixel is one of the 

10% strongest features in the image. 

 

The threshold value cannot be determined at design time 

since it strongly depends on the camera and environment 

conditions. Thus, the TH adpt module (see Fig. 5) is in 

charge of calculating the initial threshold value and 

adapting it frame by frame, by simply applying 

Algorithm1. 

 

where N target features represents the strongest features in 

the input image (i.e., the 10% of the complete image). 

 
 

Gap is the difference between the current number of 

extracted Sobel features (N Sobel features) and N target 

features. If the value of Gap is less than -3000 or more 

than 3000, the current value of the threshold (i.e., 

Current_TH) is incremented or decremented (depending 

on its value) by one Offset. The new calculated value for 

the threshold (i.e., New_TH) represents the threshold to be 

provided in input to the comparator for the next input 

image. 
 

Since at high frame rates the image conditions between 

two consecutive frames are approximately the same, the 

threshold value calculated from the previous frame can be 

applied to the current processed frame. This task is 

performed for every input frame, in order to maintain the 

number of extracted features around N target features. 

Obviously, at startup the Current TH is initialized to a low 

value, and experiments using a MATLAB implementation 

of the NVE, applied on the Affine Covariant regions 

Datasets [9], have shown that TH adpt need a maximum of 

8 frames to reach a stable threshold value. 
 

In parallel to the SE operations, the Laplacian module 

computes the convolution between the input image and the 

3x3 Laplacian Kernel (see Sec. III)This operation is 

performed adopting the same approach used in the Gx and 

Gy modules. 
 

Although, in this case the MUL/ADD tree is composed of 

9 multipliers (all Laplacian Kernel factors are different 

from zero) and 4 adder stages, for a total amount of 8 

adders. 
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The Laplacian output is provided in input to an 

accumulator (acc in Fig. 5). This accumulator is enabled 

only when SE provides in output a zero, in other words 

only when the current processed pixel is not one of the 

10% strongest features. In this way, when the complete 

image has been received acc contains the value of the sum 

in Eq. (4). 

 

The following two multipliers conclude the computation 

of Eq. (4). To ensure a minimal error, the C constant needs 

to be represented in the 0.25 fixed-point formats and, for 

the same reason, the following multipliers maintain the 

same number of bits for the fractional part. The estimated 

noise variance in output is then truncated to 12.25 fixed-

point formats. Thus, the NVE is able to estimate Gaussian 

noise variance values up to 4000. 

 

Finally, to improve the timing performances of the NVE 

module, pipeline stages have been inserted in the 

MUL/ADD trees and between the two output multipliers. 

 

B. Local Variance Estimator 

The LVE module receives in input the pixels read from the 

external memory, and it provides in output 𝜎2
NI (x, y), 

computed exploiting Eq. (8). The internal parallel 

architecture of LVE is shown in Fig. 7. 

 
Figure 7: LVE Internal architecture 

 

It is composed of three main blocks: the SIWB, the Mean2 

and the S-comp. Since both Mean
2
 and S-comp perform 

operations involving patches, the input pixels are stored 

exploiting the same buffering approach adopted in the 

NVE module (i.e. SIWB explained in Sec. IV-A). The 

only difference concerns the IWB, which is composed of 

11 BRAMs, because the LVE operations involve 11x11 

pixels patches, as discussed in Sec. III.  

 

The SIWB output pixels are provided in input to the 

Mean
2
 and the S-comp modules. Moreover, the SIWB 

output pixels are also provided in output of LVE. 

 

Mean
2
 computes the second term of Eq. (9). The received 

pixels are sent to the ADD tree that computes the sum by 

means of a balanced tree composed of 7 adder stages, for a 

total amount of 120 adders. Finally, the output of the tree 

is sent to the two following multipliers to complete the 

computation of the second term of Eq. (9). To ensure a 

high precision, the value of the 1/T constant and of the two 

multiplier outputs are represented in fixed-point format, 

with 15 bit for the fractional part.In parallel to the 

operations performed by Mean
2
, S-comp computes the S 

variable (see Eq. 9)). The outputs of SIWB are provided in 

input to the MUL/ADD Tree. This tree is composed of a 

multiplier stage (i.e., 121 8x8-bit multipliers), that 

computes the square of the pixels in the current patch, and 

7 adder stages (i.e., 120 adders), that compute the sum in 

Eq. (8). In order to obtain the S value, the output of the 

tree is multiplied by the 1/T constant. 

 

Finally, the local variance 𝜎2
NI (x, y) is computed as the 

difference between the output of the S-comp module and 

the one of the Mean
2
 module, resorting to a 31-bit 

subtractor. 

 

As shown in Fig. 7, in order to reduce the area occupation, 

the data parallelism of each arithmetic component (i.e., 

multiplier or subtractor) has been truncated to a fixed 

format able to represent the maximum achievable value. 

The maximum values obtainable during the computation 

has been defined exploiting an exhaustive validation 

campaign using a MATLAB LVE implementation, applied 

on the Affine Covariant Regions Datasets. 

 

Moreover, several pipeline stages have been inserted to 

improve the timing performances of the LVE module. For 

this reason, since 𝜎2
NI (x, y) must be provided in output 

with the associated patch, the SIWB pixels are delayed in 

order to synchronize the LVE outputs. 

 

C. Adaptive Gaussian Filter  

Gaussian Filter receives the 𝜎2
n, the 𝜎2

NI (x, y), and the 

pixels in output from the SIWB of the LVE (see Sec. III-

B), and it outputs a filtered pixel each clock cycle. The 

internal architecture of this module is summarized with 

Fig. 8. 

 

The Adaptive Gaussian Filter is composed of three main 

modules: the Filter Variance Estimator (FVE), the Kernel 

Factors Selector (KFS), and the Gaussian Filter. FVE 

computes 𝜎2
f by applying Eq. (1). Thanks to a 

testcampaign using aMATLAB implementation of the 

Adaptive Gaussian Filter, applied on the Affine Covariant 

RegionsDatasets, it is possible to understand that Eq. (1) 

can be modelled exploiting Algorithm 2. 

 

The selected model allows a very efficient hardware 

implementation of the selection condition, by simply 

adopting a shifter and a comparator (see Fig. 8). Then, 𝜎2
f 

(x, y) is computed using a pipelined divider and a 

multiplier, and it is provided in input to KFS. 

 

This module aims at defining the Gaussian kernel factors 

associated with the current 𝜎2
f (x, y). These values cannot 
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be computed in real-time, because the associated formula 

[8] is very complex and time consuming, so they are 

precomputed and stored inside the hardware. 

 
Figure 8: Adaptive Gaussian Internal architecture 

 
 

Since each value of 𝜎2
f (x, y) (represented using 31 bit) 

has a different associated kernel of 121 factors (i.e., the 

size of the kernel used to perform the filtering task is 

11x11 pixels), 

 

a huge amount of data should be stored (2
31

 . 121 kernel 

factors). In order to reduce the required memory resources, 

in the proposed hardware implementation, the range of  𝜎2
f 

(x, y) (i.e. (0, 1.5], see Sec. III) has been discretized 

adopting a resolution of 0.1. In this way, the number of 

sets of 121 Gaussian kernel factors has been limited to 14. 

Moreover, the required storage capability has been limited 

exploiting the symmetry of Gaussian kernel, also. Since 

Gaussian kernels are circularly symmetric matrices, many 

factors inside them are equal to each others. Fig. 9 shows 

an example of a 5x5 Gaussian kernel structure, in which 

the kernel factors to be stored have been highlighted. 

 
Figure 9: Example of  a 5 x 5 Gaussian Kernel Structure 

Since in a 11x11 Gaussian kernel the number of distinct 

kernel factors is equal to 21, in the proposed hardware 

architecture the internally stored data for each  𝜎2
f (x, y) 

has been limitedto this value. 

 

For these reasons, KFS has been implemented has a 

cluster of 14 21-input multiplexers, in which each 

multiplexer is driven by the same selection signal, whose 

value is defined depending on the current 𝜎2
f (x, y). In this 

way, the cluster of multiplexers is able to provide in output 

the 21 factors useful to represent the Gaussian kernel 

associated with the current 𝜎2
f (x, y). Finally, the 

multiplexer outputs are duplicated in order to reconstruct 

the complete set of 121 kernel factors for a given 𝜎2
f (x, 

y). 

 

The reassembled set of kernel factors are then provided in 

input to the the Gaussian Filter together with the input 

pixels from the SIWB, that are delayed to be synchronized 

with the kernel factors. Then, Gaussian Filter computes 

the 2D convolution between the input pixel patch (i.e., 

Pixels from SIWB in Fig. 6) by means of a MUL/ADD 

tree composed of a multiplier stage (i.e., 121 multipliers) 

and 7 adder stages (i.e., 120 adders). 

 

IV.  EXPERIMENTAL RESULTS 
To evaluate the hardware resources usage and the timing 

performances, the proposed architecture has been 

synthesized, resorting to Xilinx ISE Design Suite 14.4, on 

a Xilinx Virtex 6 VLX240 FPGA device. Post-place and 

route simulations have been done with Modelsim SE 

10.0c. Table I shows the resources utilization and the 

maximum operating frequency of each module composing 

AIDI. 

 

To compare our architecture with the FPGA-based 

architectures for noise estimation and static Gaussian 

filtering presented, AIDI has been also synthesized on a 

Virtex II FPGA. 

 

Concerning the NVE module, it uses 3,202 LUTs and 3 

BRAMs, while the real-time noise estimator presented 

uses 4,608 LUTs, 72 BRAMs and 24 DSP elements. 

 

Moreover, the proposed NVE achieves higher timing 

performance  In fact, the architecture presented in [10] is 

designed for real-time processing of 720x288 pixels 

images at 130 frames-per-second (fps), while our NVE 

module is able to process frames characterized by a higher 

resolution (i.e., up to 1024x1024 pixels) at 136 fps. 
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The performances achieved by AIDI have been also 

compared with the architecture presented in [6]. Regarding 

the area occupation on a Virtex II FPGA device, the 

proposed architecture uses 37,695 LUTs and 24 BRAMs, 

whereas the FPGA-based static Gaussian filter presented 

in [6] uses 22,464 LUTs, 39 BRAMs and 32 DSP 

elements. The higher logic resource occupation (i.e., 

LUTs) of the proposed architecture is due to two main 

aspects. The former concerns the kernel used to perform 

the filtering task, that in AIDI is 11x11 while in [6] is 7x7 

(i.e., the 7x7 kernel size does not provide high filtering 

performance for high level of noise). The latter regards the 

adaptivity provided by AIDI, that is not supported by [6]. 

Moreover, AIDI provides better timing performance than 

[6]. In fact, AIDI is able to filter 1024x1024 pixels frames 

achieving a maximum output frame rate of 68 fps, while 

[6] process 1024x1024 pixels images with a frame rate of 

48 fps. 
 

In order to evaluate the improvements provided by AIDI 

w.r.t. a static Gaussian filtering approach, an evaluation 

campaign has been performed on the image dataset 

reported in Fig.7. 
 

On these images, different levels of white Gaussian noise 

have been injected, spanning from a noise variance of 100 

to 4,000, exploiting the imnoise function provided by the 

MATLABImage Processing Toolbox. Fig. 8 shows some 

examples of the injected noise on an image. 
 

The benefits provided by the adaptivity have been 

quantified computing the Mean Square Error (MSE): 

MSE = 
1

𝐻𝑆𝐸
∑   (I(x, y) – IF(x, y))

2
            (11) 

where H and W are the height and the width of the input 

image, and I(x; y) and IF (x; y) are the pixel intensities in 

the (x, y) position of the noise free and the filtered images, 

respectively. 

 
Figure 10: Image dataset exploited for the evalution 

campaign 

Each noisy image has been filtered using: 

(i) A static 11x11 Gaussian filter (with a 𝜎2
f equal to k  

      (see Sec. IV). 

(ii) A MATLAB model of AIDI (Adaptive (SW)),         

      involving the double precision. 

(iii) The AIDI hardware implementation (Adaptive (HW)),   

       which involves fixed-point representation. The graphs   

        in Fig. 12 plot the trends of the MSEs, computed for    

        each image composing the adopted image dataset (see      

        Fig. 11), versus the variance of the injected noise.         

        Fig. 12 highlights two main aspects: 

 

1) The error introduced by the fixed-point representation 

w.r.t. the double precision implementation can be 

neglected (Adaptive (SW) vs. Adaptive (HW) in Fig. 

12) 

2) The MSE associated with the output of AIDI is 

always lower than the one affecting the output of a 

static Gaussian filter (Adaptive (HW) vs. Static in Fig. 

12). Moreover, the benefits increase for noise levels 

with 𝜎2
f ≤ 1; 000, while for higher noise levels, the 

improvement decreases because the local variance of 

the image is greatly influenced by the noise, and so it 

cannot be accurately computed. 

 

Finally, to prove the effectiveness of the proposed 

FPGAbased adaptive filter in preserving edges w.r.t. a 

standard staticGaussian filtering approach, the images 

filtered with both methods have been provided in input to 

a Laplacian edge detector. Fig. 10a shows an example of 

image affected by white Gaussian noise with 𝜎2
n= 1,500, 

while Fig. 12b, Fig. 12c, and Fig. 12d show the edges 

extracted from the non-filtered image, the filtered image 

with a static Gaussian filter, and the image filtered with 

AIDI, respectively. Despite the high injected noise, AIDI 

is able to filter the image without smoothing edges, 

improving the performanceof the edge detector. Instead, 

the static Gaussian filter outputs a smoothed image, in 

which edges are weakened and difficultto be detected. 

 
Figure 11: Example of injected level of noise 
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V.  CONCLUSION 

This paper presented AIDI a high performance 

FPGAbased image denoiser for real-time applications. 

This IP core enables to self adapt the filtering parameters 

to the level of noise in the input image pixel by pixel, 

resulting in a more accurate filtered image. 

 

The experimental results show a strong improvement of 

the quality of the filtered image w.r.t. the one obtained 

from a static Gaussian filter, especially for noise level with 

𝜎2
n ≤ 1; 000.These enhancements allow to increase the 

precision of all the modules, composing an image 

processing chain, that receive in input the filtered image 

(e.g., edge detector). 

 
Figure 12: Laplacian edge extraction – (a) Noisy image in 

input  (σ
2
n = 1500) (b) Edge extracted from noisy image 

(c) Edge extracted From the image filtered by a static 11 x 

11 filter (d) Edge extracted from image filtered by AIDI 
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