
 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 73

AIDI: Adaptive Image Denoising IP-core

 based on FPGA

Honnambika M
1
, Latha k

2
, M N Eshwarappa

3

PG Student, VLSI Design and Embedded Systems, SIET, Tumkur, Karnataka, India
1

Assistant Professor, Department of E&C, SIET, Tumkur, Karnataka, India
2

HOD, Department of E&C, SIET, Tumkur, Karnataka, India
3

Abstract: The presence of noise in images can significantly impact the performances of computer vision algorithms

and digital image processing. Thus, noise should be removed to improve the robustness of the entire process. Denoising

or noise reduction is one of the most essential processes for digital image processing. The main goal of denoising is

how to remove the noise while keeping the important features of the image. The denoising methods should not alter the

original image, most denoising methods degrade or remove the fine details. This paper p resents an Adaptive Image

Denoising IP-core (AIDI) for real time applications. Here core first estimates the level of noise in the input image, then

applies an adaptive Gaussian smoothing filter to remove the estimated noise. The filtering parameters are computed on-

the-fly, adapting them to the level of noise in the image and pixel by pixel to preserve image information (e.g., edges or

corners). The noise estimation in an image is also a key factor since to be more effective, algorithms and denoising

filters should be tuned to the actual level of noise. Moreover, the complexity of these algorithms brings a new challenge

in real-time image processing applications, requiring high computing capacity. In this context, hardware acceleration is

crucial, and Field Programmable Gate Arrays (FPGAs) best fit the growing demand of computational capabilities.

The architecture uses FPGA, it shows the improvements with respect to a standard static filtering approach.

Keywords: Gaussian noise, noise estimation, Laplacian operator, noise reduction, edge detection. Adaptive Gaussian

filtering, Gaussian noise, denoising.

I. INTRODUCTION

This Nowadays, computer vision is one of the most

evolving areas of Information Technology (IT). Image

processing is widely used in several application fields,

such as aerospace, medical, or automotive. In every

computer vision application, one or more images are taken

from a camera, and processed, in order to extract

information used for edge detection, features

identification, or image registration.

Image processing is widely used in many fields, such as

medical imaging, scanning techniques, printing skills,

license plate recognition, face recognition, and so on.

Unfortunately, the technology provided by modern Charge

Coupled Device (CCD) sensors suffers from noise. In a

CCD camera there are many potential sources of noise,

such as Shot Noise, Dark current, Read Noise and

Quantization noise are some of examples. CCD

manufacturers typically Combine these on-chip noise

sources, and express them in terms of a number of

electrons Root Mean Square (RMS). However, in image

the level of noise does not depend on the adopted sensor

only but also depends on the environmental condition as

well. Noise estimation and removal are thus necessary to

improve the effectiveness of image processing algorithms.

To estimate how an image is affected by noise, a well

characterized noise model must be defined. Since noise

sources are random in nature, their values must be handled

as random variables, described by probabilistic functions.

In fact, Dark Current, proportional to the integration time

and temperature, is modeled as a Gaussian distribution,

Shot and Read Noise, caused by on-chip output amplifiers,

are modeled as Poisson distributions, and, detector

malfunction or hot pixels are modeled by an impulsive

distribution.

In most cases, all Gaussian and Poisson distributed noises

are combined, approximating the image noise with an

equivalent additive zero-mean white Gaussian noise

distribution, characterized by a variance 𝜎n
2
.

While the impulsive noise can be removed in a relatively

simple way, Gaussian noise removal is a non trivial task,

since, to be more effective, the filter must be adapted to

the actual level of noise in the image. Noise estimation is

therefore a fundamental task. Nonetheless, in modern real-

time systems, a software implementation of these complex

algorithms cannot be used, since it does not meet real-time

constraints. In this context, FPGAs are a good choice to

hardware accelerate the noise estimation and removal

tasks. This enables subsequent image processing

algorithms to fully exploit the remaining timing budget.

This paper presents AIDI: an Adaptive Image Denoising

FPGA-based IP-core for real-time applications. The core

first estimates the level of noise in the input image. It then

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 74

applies an adaptive Gaussian smoothing filter to remove

the estimated Gaussian noise. The filtering parameters are

computed onthe-fly, adapting them to the level of noise of

the current image. Furthermore, the filter uses local image

information to discriminate whether a pixel belongs to an

edge in the image or not, preserving it for subsequent edge

detection or image registration algorithms. An FPGA-

based implementation has been targeted, since FPGAs are

increasingly used in real-time systems as hardware

accelerators, even in mission-critical applications, such as

aerospace field.The paper is organized as follows: Section

II gives an overview on noise estimation and removal

approaches, and their existing hardware implementations.

Section III presents the hardware architecture of the

proposed IP-core, while Section IV shows the

experimental results. Finally, in Section V, some

conclusions are drawn.

II. RELATED WORK
Noise estimation methods, targeting additive white

Gaussian noise, can be classified in two categories: filter-

based and block-based. With the former method, the noisy

image is filtered by a low pass filter to suppress image

structures (e.g., edges), and then the noise variance is

computed based on the difference between the filtered and

the noisy image (called difference image)[1]. With the

latter method, the image is split into cells, and the noise

variance is computed identifying the most homogeneous

cells[2][3].

 Proved that filter-based methods work better than block

based methods at high noise levels, but they are complex

and require high computational load. In addition, filter-

based methods assume the difference image as the noise

affecting the input image, but this assumption is not true

for images with several structures or details.

To tackle this problem, [1] estimates noise by combining a

simple edge detector and a low-pass filter. The proposed

algorithm has good performances even with high detailed

images at different level of noise, and it requires only

simple mathematical operations (i.e., convolutions and

averaging operations).

Denoising methods can be based on linear or on non-linear

models. On the one hand, median and Gaussian filters are

commonly used to remove noise, offering a good trade-off

between complexity and effectiveness in smoothing out

noise. These methods work well in the flat regions of

images, but they do not well preserve the image edges,

that appear smoothed. On the other hand, denoising

methods based on non-linear models (e.g., wavelets-based

methods) can handle edges in a better way, but are more

complex, and often not applicable in real-time image

processing for high resolution images.

In [4] the authors propose an adaptive Gaussian filter

which tries to limit the edge smoothing problem of

standard Gaussian filtering methods. A large filter

variance is effective in smoothing out noise, but, at the

same time, it distorts those parts of the image where there

are abrupt changes in pixel intensity. This can lead to edge

position displacement, vanishing of edges, or phantom

edges (i.e., artifacts in the image).

To address this problem, [4] adapts the filter variance to

the local characteristics of the input image. It makes use of

the local variance of the image, and the estimated

Gaussian noise in the image. It has been proven that this

adaptive filtering approach succeeds in preserving edges

and features of an image, even in presence of noise, better

than a static filtering approach.

Hardware implementations of denoising methods have

been widely investigated. [5] propose FPGA-based

implementations of median filters. However, median

filtering is strictly recommended for impulse noise

removal (i.e., Salt and-Pepper noise), while it does not

provide good results when the image is affected by

Gaussian noise. An FPGA-based implementation of a

Gaussian smoother has been proposed in[6], but its main

drawback is the non-adaptivity of the filter, which results

in edge smoothing. [7]propose implementations of

wavelet-based and bilateral filter image denoisers,

respectively. However, none of these works account for a

noise estimation module to be included into the hardware

architecture.

In Cartesian Genetic Programming (CGP) image filters

have been proposed. CGP-based filters are able to reduce

the noise on the image while preserving edges. Moreover,

they can be efficiently implemented on FPGAs requiring

few hardware resources. However, since CGP filters are

based on evolutionary algorithms, they require a lot of

iterations to provide the filtered image, making them

inappropriate for rea ltime applications. Hardware

implementations of noise estimators have not been deeply

investigated by the research community. The proposed

architecture wastes a lot of hardware and memory

resources to perform sorting and logarithmic operations.

Moreover a noise removal module is not included in the

architecture. The presented paper introduces a

comprehensive FPGA-based architecture, including noise

estimation and noise removal in a single IP-core. It targets

the estimation and removal of additive white Gaussian

noise. The chosen adaptive Gaussian filtering approach

ensures edge preserving capability, while the noise

estimation algorithm is able to estimate the variance of

Gaussian noise with high accuracy[1][4].

The proposed adaptive FPGA-based architecture ensures

real time performances, even with 1024x1024 pixels grey-

scale images, with 8 bit-per-pixel resolution (bpp).

Nonetheless, the proposed architecture uses few hardware

resources, allowing to include, in the same device,

additional image processing algorithms.

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 75

III. AIDI ARCHITECTURE
AIDI is a highly parallelized and pipelined FPGA-based

IPcore that gets in input, through a 32-bit interface, a

1024x1024 grey scale image (e.g., from a CCD camera)

with 8 bpp and outputs a filtered pixel each clock cycle,

through a 25 bit interface. Input pixels are received as a set

of 32-bit packets (i.e., 4 pixels are received in a clock

cycle), without any header or padding bit.

In order to self-adapt the Gaussian filter to the current

input image, AIDI applies the approach presented in [4].

This approach can be mathematically formalized as

follow:

 (1)

where 𝜎2
f (x, y) is the variance of the Gaussian filter to be

applied at the pixel of the input image in (x, y) position,

𝜎2
n is the estimated white Gaussian noise variance of the

input image, k is a constant equal to 1.5, and 𝜎2
OI (x, y) is

the local variance of the image without noise (i.e., noise

free image) in (x,y) pixel, that can be computed as:

𝜎2
OI (x, y)= 𝜎2

NI (x, y) - 𝜎n
2
 (2)

where𝜎2
NI (x, y) is the local variance associated with the

noisy input pixel image. Basically, this algorithm adapts

the variance of the Gaussian filter 𝜎2
f (x, y)pixel-by-pixel,

in order to strongly reduce the noise in smoothed image

areas (i.e., low image local variance 𝜎2
OI (x, y)), and to

reduce the distortion in areas with strong edges (i.e., high

𝜎2
OI (x, y)). In other words, 𝜎2

f (x, y)is increased in the

first case and decreased in the second one. 𝜎2
f(x,

y)canrange from valuesnear0 to 1.5.

AIDI includes three main modules (Fig.1): the Local

Variance Estimator (LVE), the Noise Variance Estimator

(NVE) and the Adaptive Gaussian Filter.

First, the input pixels feed the NVE and, in parallel, they

are stored into an external memory through a 32-bit

interface.

The NVE, exploiting the algorithm presented in, computes

the Gaussian noise variance (i.e., 𝜎2
n) affecting the input

image. The selected algorithm involves highly

parallelizable operations.

Figure 1: AIDI Internal architecture

 It first requires to extract the strongest edges (or features)

of the input image exploiting the Sobel features extractor.

This task is performed using two 2D convolutions between

the input image and the Sobel kernels (Eq. (3)).

-1 -2 -1

Gx= I (x, y)* 0 0 0

1 2 1 ,

 -1 0 1

Gy= I (x, y) * -2 0 2

 1 0 1

G=Gx+ Gy (3)

Where I(x; y) is the pixel intensity in the (x, y) position of

the input image, and G is the edge map associated with the

input image. The strongest edges are then extracted by

selecting the highest 10% values inside G. example (as

shown in Fig.2)

Figure 2: Detect edges using the Sobel method

Finally, 𝜎2
n can be computed as:

σ
2

n = C. ∑ I(x, y) ∗ N 2
 (4)

Where N is the 3x3 Laplacian kernel and C is a constant

defined as:

 (5)

where W and H are the width and height of the input

image, respectively (in our architecture W=H = 1024).

Fast Method for Image Noise Estimation Using Laplacian

Operator:

We assume that the image is corrupted by additive, white

Gaussian noise with unknown deviation 𝜎n,

and the model is given by:

I n(x, y I (x, y n(x, y) (6)

where x and y are the vertical and horizontal coordinates

of a pixel, In(x, y), I(x, y) and n(x, y) are the noisy image,

the original image and the additive Gaussian noise

respectively. Our goal is to estimate the standard deviation

σnof the noise from the noisy image.

Figure 3: Block diagram of “fast estimation”

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 76

The first step of the “Fast Estimation” method is to

suppress the image structures by the following Laplacian

operator:

 1 -2 1

N = -2 4 -2 (7)

 1 -2 1

Then the standard deviation of the noise can be using eq.

(4)

When the computation of 𝜎2
n is completed, the overall

image is read out from the external memory and provided

in input to the LVE. The LVE computes the local variance

associated with each input pixel 𝜎2
NI (x, y). The local

variance of a pixel is defined as the variance calculated on

an image window (i.e. patch) centeredaround the

considered pixel. (As shown in Fig. 4)

Figure 4: Pixel neighboring comparison

To perform this task, LVE applies the following formula:

σ
2

NI(x,y)= S -
1

T
. ∑ I(x, y) 2

 (8)

where T is a constant equal to the number of elements in

the patch (a 11x11 pixels patch has been selected in our

architecture to ensure an accurate local variance

estimation), and S is equal to:

S =
1

T
. ∑ I(x, y) (9)

Since LVE has a pipelined internal architecture, at each

clock cycle it provides in output the 𝜎2
NI (x, y) and the

related pixel values composing the patch.

The Adaptive Gaussian Filter receives the 𝜎2
ncomputed by

NVE, and the outputs of the LVE. The filter computes

equations (1) and (2), in order to find the best filter

variance value (i.e., 𝜎2
f (x, y)). After this computation, this

module applies the Gaussian smoothing on the current

received pixel.

The Gaussian filtering operation is performed by means of

a 2D-convolution on the input image with a 11x11 pixels

Gaussian kernel. The selected filter size allows to

accurately represent the Gaussian function with variance

values in the selected range (i.e., (0, 1.5], as described

before). The values of the Gaussian kernel are adapted

pixel-by-pixel, depending on the computed 𝜎2
f (x, y), as

described in Subsection IV -C. In the following

subsections all the hardware implementation details of the

AIDI modules are deeply analyzed.

A. Noise Variance Estimator

The NVE module receives the input image through a 32-

bit interface (4 pixels are received at each clock cycle),

and it provides in output the estimated white Gaussian

noise variance 𝜎2
n affecting the image. The internal

architecture of NVE is shown in Fig. 5.

Figure 5: NVE Internal architecture

Since NVE must perform operations involving patches

(see Sec.IV), in order to speed up the computation, the

input pixels are stored exploiting a circular buffering

approach, implemented by the Smart Image Window

Buffer (SIWB) of Fig. 6.

Figure 6: SIWB Internal architecture

Input pixels, grouped in 32-bit packets, are sent to the

IWB writer that serializes the pixels using a FIFO, and

stores them inside the Image Window Buffer (IWB in Fig.

3). IWB is composed of 3 FPGA internal Block-RAMs

(BRAMs), each devoted to store an entire image row. 3

BRAMs are used since pixels from 3 different rows of the

image are needed at the same time, to perform the required

operations on a 3x3 pixels image patch. Initially, the IWB

writer fills each BRAM, starting from the top one to the

bottom one. During a convolution operation image borders

are not processed [8], thus, when all BRAMs are filled, the

pixels necessary to process the second row of the image

are available to be read-out. While the second row is being

processed, pixels associated with the fourth row of the

image are received. They overwrite the content of the

BRAM that contains the oldest row (i.e., the first row in

this case).

In general, while the i-th image row is being processed,

pixels of the (i+2)-th image row are being received. The

IWB writer stores received pixels in the BRAM that

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 77

contains the ones associated to the (i-1)-th image row (i.e.,

IWB works as a circular buffer). This buffering approach

leads to two advantages: (i) when the 3 BRAMs are filled,

all required pixels to compute a row are available,

allowing a pixel every clock cycle to be processed; (ii) it

completely avoids any access to the external memory,

because when an image row in thebuffer is overwritten by

a new one, the data of the replaced row are not needed for

the following computations.

The pixels of the image, associated with the current 3x3

patch, are read-out from the IWB by the IWB reader. IWB

reader is a Finite-State-Machine (FSM) charged of reading

out the pixels from the IWB and providing them to the 3x3

Register window in the right order.Basically, when all

pixels needed to process the i-th image row (i.e., pixels

from the i-1th row to i+1th row) are stored in the IWB, the

IWB reader can start to read a pixel from each BRAM of

the buffer. Read pixels are loaded into the first column of

the 3x3

8-bit FFs Register Window. Each row of the 3x3 Register

windows is a shift register. Thus, at the next clock cycle,

when another column of 3 pixels is loaded, the previous

column is shifted to the next position. Whenever the 3x3

Register windows is filled with all the pixels of a patch,

they are provided in output of the SIWB. It is important to

highlight that the IWB writer loads the image rows in the

IWB as in a circular buffer. Thus, the image rows are

stored in the IWB in an out-of-order manner (w.r.t. the

original image).

Consequently, IWB reader must rearrange the position of

the pixels in order to store them in the 3x3 Register

windows with the same order as in the original image. In

this way, at each clock cycle, the pixels of the current

patch are provided in output of the SIWB in the right

order.

The outputs of SIWB feed the two main modules of LVE:

the Sobel Extractor (SE in Fig. 5), and the Laplacian.

Basically, SE extracts the features from the input image

and asserts its output flag only if the currently processed

pixel is one of the 10% strongest features in the image.

First, SE computes the operations reported in Eq. (3). The

Gx and Gy modules receive in input the pixels of the

current 3x3 patch and compute the 2D convolutions

between the input pixels and the Sobel kernels.

These two modules are internally implemented as a

MUL/ADD tree composed of 6 multipliers (only 6 values

are different from zero in Sobel kernels) and 3adder

stages, for a total amount of 5 adders. Moreover, since the

Sobel kernel factors can only be equal to 1, -1, 2 or -2, in

order to reduce the area occupation, the multipliers are

replaced by a wire, a sign inverter, a shifter, and a sign

inverter & shifter, respectively.

The outputs of the Gx and Gy are then added together,

through a 16 bit adder, to find the G value (see Eq. (3)).

The computed G is compared with a threshold in order to

set the SE output only if the current pixel is one of the

10% strongest features in the image.

The threshold value cannot be determined at design time

since it strongly depends on the camera and environment

conditions. Thus, the TH adpt module (see Fig. 5) is in

charge of calculating the initial threshold value and

adapting it frame by frame, by simply applying

Algorithm1.

where N target features represents the strongest features in

the input image (i.e., the 10% of the complete image).

Gap is the difference between the current number of

extracted Sobel features (N Sobel features) and N target

features. If the value of Gap is less than -3000 or more

than 3000, the current value of the threshold (i.e.,

Current_TH) is incremented or decremented (depending

on its value) by one Offset. The new calculated value for

the threshold (i.e., New_TH) represents the threshold to be

provided in input to the comparator for the next input

image.

Since at high frame rates the image conditions between

two consecutive frames are approximately the same, the

threshold value calculated from the previous frame can be

applied to the current processed frame. This task is

performed for every input frame, in order to maintain the

number of extracted features around N target features.

Obviously, at startup the Current TH is initialized to a low

value, and experiments using a MATLAB implementation

of the NVE, applied on the Affine Covariant regions

Datasets [9], have shown that TH adpt need a maximum of

8 frames to reach a stable threshold value.

In parallel to the SE operations, the Laplacian module

computes the convolution between the input image and the

3x3 Laplacian Kernel (see Sec. III)This operation is

performed adopting the same approach used in the Gx and

Gy modules.

Although, in this case the MUL/ADD tree is composed of

9 multipliers (all Laplacian Kernel factors are different

from zero) and 4 adder stages, for a total amount of 8

adders.

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 78

The Laplacian output is provided in input to an

accumulator (acc in Fig. 5). This accumulator is enabled

only when SE provides in output a zero, in other words

only when the current processed pixel is not one of the

10% strongest features. In this way, when the complete

image has been received acc contains the value of the sum

in Eq. (4).

The following two multipliers conclude the computation

of Eq. (4). To ensure a minimal error, the C constant needs

to be represented in the 0.25 fixed-point formats and, for

the same reason, the following multipliers maintain the

same number of bits for the fractional part. The estimated

noise variance in output is then truncated to 12.25 fixed-

point formats. Thus, the NVE is able to estimate Gaussian

noise variance values up to 4000.

Finally, to improve the timing performances of the NVE

module, pipeline stages have been inserted in the

MUL/ADD trees and between the two output multipliers.

B. Local Variance Estimator

The LVE module receives in input the pixels read from the

external memory, and it provides in output 𝜎2
NI (x, y),

computed exploiting Eq. (8). The internal parallel

architecture of LVE is shown in Fig. 7.

Figure 7: LVE Internal architecture

It is composed of three main blocks: the SIWB, the Mean2

and the S-comp. Since both Mean
2
 and S-comp perform

operations involving patches, the input pixels are stored

exploiting the same buffering approach adopted in the

NVE module (i.e. SIWB explained in Sec. IV-A). The

only difference concerns the IWB, which is composed of

11 BRAMs, because the LVE operations involve 11x11

pixels patches, as discussed in Sec. III.

The SIWB output pixels are provided in input to the

Mean
2
 and the S-comp modules. Moreover, the SIWB

output pixels are also provided in output of LVE.

Mean
2
 computes the second term of Eq. (9). The received

pixels are sent to the ADD tree that computes the sum by

means of a balanced tree composed of 7 adder stages, for a

total amount of 120 adders. Finally, the output of the tree

is sent to the two following multipliers to complete the

computation of the second term of Eq. (9). To ensure a

high precision, the value of the 1/T constant and of the two

multiplier outputs are represented in fixed-point format,

with 15 bit for the fractional part.In parallel to the

operations performed by Mean
2
, S-comp computes the S

variable (see Eq. 9)). The outputs of SIWB are provided in

input to the MUL/ADD Tree. This tree is composed of a

multiplier stage (i.e., 121 8x8-bit multipliers), that

computes the square of the pixels in the current patch, and

7 adder stages (i.e., 120 adders), that compute the sum in

Eq. (8). In order to obtain the S value, the output of the

tree is multiplied by the 1/T constant.

Finally, the local variance 𝜎2
NI (x, y) is computed as the

difference between the output of the S-comp module and

the one of the Mean
2
 module, resorting to a 31-bit

subtractor.

As shown in Fig. 7, in order to reduce the area occupation,

the data parallelism of each arithmetic component (i.e.,

multiplier or subtractor) has been truncated to a fixed

format able to represent the maximum achievable value.

The maximum values obtainable during the computation

has been defined exploiting an exhaustive validation

campaign using a MATLAB LVE implementation, applied

on the Affine Covariant Regions Datasets.

Moreover, several pipeline stages have been inserted to

improve the timing performances of the LVE module. For

this reason, since 𝜎2
NI (x, y) must be provided in output

with the associated patch, the SIWB pixels are delayed in

order to synchronize the LVE outputs.

C. Adaptive Gaussian Filter

Gaussian Filter receives the 𝜎2
n, the 𝜎2

NI (x, y), and the

pixels in output from the SIWB of the LVE (see Sec. III-

B), and it outputs a filtered pixel each clock cycle. The

internal architecture of this module is summarized with

Fig. 8.

The Adaptive Gaussian Filter is composed of three main

modules: the Filter Variance Estimator (FVE), the Kernel

Factors Selector (KFS), and the Gaussian Filter. FVE

computes 𝜎2
f by applying Eq. (1). Thanks to a

testcampaign using aMATLAB implementation of the

Adaptive Gaussian Filter, applied on the Affine Covariant

RegionsDatasets, it is possible to understand that Eq. (1)

can be modelled exploiting Algorithm 2.

The selected model allows a very efficient hardware

implementation of the selection condition, by simply

adopting a shifter and a comparator (see Fig. 8). Then, 𝜎2
f

(x, y) is computed using a pipelined divider and a

multiplier, and it is provided in input to KFS.

This module aims at defining the Gaussian kernel factors

associated with the current 𝜎2
f (x, y). These values cannot

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 79

be computed in real-time, because the associated formula

[8] is very complex and time consuming, so they are

precomputed and stored inside the hardware.

Figure 8: Adaptive Gaussian Internal architecture

Since each value of 𝜎2
f (x, y) (represented using 31 bit)

has a different associated kernel of 121 factors (i.e., the

size of the kernel used to perform the filtering task is

11x11 pixels),

a huge amount of data should be stored (2
31

 . 121 kernel

factors). In order to reduce the required memory resources,

in the proposed hardware implementation, the range of 𝜎2
f

(x, y) (i.e. (0, 1.5], see Sec. III) has been discretized

adopting a resolution of 0.1. In this way, the number of

sets of 121 Gaussian kernel factors has been limited to 14.

Moreover, the required storage capability has been limited

exploiting the symmetry of Gaussian kernel, also. Since

Gaussian kernels are circularly symmetric matrices, many

factors inside them are equal to each others. Fig. 9 shows

an example of a 5x5 Gaussian kernel structure, in which

the kernel factors to be stored have been highlighted.

Figure 9: Example of a 5 x 5 Gaussian Kernel Structure

Since in a 11x11 Gaussian kernel the number of distinct

kernel factors is equal to 21, in the proposed hardware

architecture the internally stored data for each 𝜎2
f (x, y)

has been limitedto this value.

For these reasons, KFS has been implemented has a

cluster of 14 21-input multiplexers, in which each

multiplexer is driven by the same selection signal, whose

value is defined depending on the current 𝜎2
f (x, y). In this

way, the cluster of multiplexers is able to provide in output

the 21 factors useful to represent the Gaussian kernel

associated with the current 𝜎2
f (x, y). Finally, the

multiplexer outputs are duplicated in order to reconstruct

the complete set of 121 kernel factors for a given 𝜎2
f (x,

y).

The reassembled set of kernel factors are then provided in

input to the the Gaussian Filter together with the input

pixels from the SIWB, that are delayed to be synchronized

with the kernel factors. Then, Gaussian Filter computes

the 2D convolution between the input pixel patch (i.e.,

Pixels from SIWB in Fig. 6) by means of a MUL/ADD

tree composed of a multiplier stage (i.e., 121 multipliers)

and 7 adder stages (i.e., 120 adders).

IV. EXPERIMENTAL RESULTS
To evaluate the hardware resources usage and the timing

performances, the proposed architecture has been

synthesized, resorting to Xilinx ISE Design Suite 14.4, on

a Xilinx Virtex 6 VLX240 FPGA device. Post-place and

route simulations have been done with Modelsim SE

10.0c. Table I shows the resources utilization and the

maximum operating frequency of each module composing

AIDI.

To compare our architecture with the FPGA-based

architectures for noise estimation and static Gaussian

filtering presented, AIDI has been also synthesized on a

Virtex II FPGA.

Concerning the NVE module, it uses 3,202 LUTs and 3

BRAMs, while the real-time noise estimator presented

uses 4,608 LUTs, 72 BRAMs and 24 DSP elements.

Moreover, the proposed NVE achieves higher timing

performance In fact, the architecture presented in [10] is

designed for real-time processing of 720x288 pixels

images at 130 frames-per-second (fps), while our NVE

module is able to process frames characterized by a higher

resolution (i.e., up to 1024x1024 pixels) at 136 fps.

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 80

The performances achieved by AIDI have been also

compared with the architecture presented in [6]. Regarding

the area occupation on a Virtex II FPGA device, the

proposed architecture uses 37,695 LUTs and 24 BRAMs,

whereas the FPGA-based static Gaussian filter presented

in [6] uses 22,464 LUTs, 39 BRAMs and 32 DSP

elements. The higher logic resource occupation (i.e.,

LUTs) of the proposed architecture is due to two main

aspects. The former concerns the kernel used to perform

the filtering task, that in AIDI is 11x11 while in [6] is 7x7

(i.e., the 7x7 kernel size does not provide high filtering

performance for high level of noise). The latter regards the

adaptivity provided by AIDI, that is not supported by [6].

Moreover, AIDI provides better timing performance than

[6]. In fact, AIDI is able to filter 1024x1024 pixels frames

achieving a maximum output frame rate of 68 fps, while

[6] process 1024x1024 pixels images with a frame rate of

48 fps.

In order to evaluate the improvements provided by AIDI

w.r.t. a static Gaussian filtering approach, an evaluation

campaign has been performed on the image dataset

reported in Fig.7.

On these images, different levels of white Gaussian noise

have been injected, spanning from a noise variance of 100

to 4,000, exploiting the imnoise function provided by the

MATLABImage Processing Toolbox. Fig. 8 shows some

examples of the injected noise on an image.

The benefits provided by the adaptivity have been

quantified computing the Mean Square Error (MSE):

MSE =
1

𝐻𝑆𝐸
∑ (I(x, y) – IF(x, y))

2
 (11)

where H and W are the height and the width of the input

image, and I(x; y) and IF (x; y) are the pixel intensities in

the (x, y) position of the noise free and the filtered images,

respectively.

Figure 10: Image dataset exploited for the evalution

campaign

Each noisy image has been filtered using:

(i) A static 11x11 Gaussian filter (with a 𝜎2
f equal to k

 (see Sec. IV).

(ii) A MATLAB model of AIDI (Adaptive (SW)),

 involving the double precision.

(iii) The AIDI hardware implementation (Adaptive (HW)),

 which involves fixed-point representation. The graphs

 in Fig. 12 plot the trends of the MSEs, computed for

 each image composing the adopted image dataset (see

 Fig. 11), versus the variance of the injected noise.

 Fig. 12 highlights two main aspects:

1) The error introduced by the fixed-point representation

w.r.t. the double precision implementation can be

neglected (Adaptive (SW) vs. Adaptive (HW) in Fig.

12)

2) The MSE associated with the output of AIDI is

always lower than the one affecting the output of a

static Gaussian filter (Adaptive (HW) vs. Static in Fig.

12). Moreover, the benefits increase for noise levels

with 𝜎2
f ≤ 1; 000, while for higher noise levels, the

improvement decreases because the local variance of

the image is greatly influenced by the noise, and so it

cannot be accurately computed.

Finally, to prove the effectiveness of the proposed

FPGAbased adaptive filter in preserving edges w.r.t. a

standard staticGaussian filtering approach, the images

filtered with both methods have been provided in input to

a Laplacian edge detector. Fig. 10a shows an example of

image affected by white Gaussian noise with 𝜎2
n= 1,500,

while Fig. 12b, Fig. 12c, and Fig. 12d show the edges

extracted from the non-filtered image, the filtered image

with a static Gaussian filter, and the image filtered with

AIDI, respectively. Despite the high injected noise, AIDI

is able to filter the image without smoothing edges,

improving the performanceof the edge detector. Instead,

the static Gaussian filter outputs a smoothed image, in

which edges are weakened and difficultto be detected.

Figure 11: Example of injected level of noise

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 81

V. CONCLUSION

This paper presented AIDI a high performance

FPGAbased image denoiser for real-time applications.

This IP core enables to self adapt the filtering parameters

to the level of noise in the input image pixel by pixel,

resulting in a more accurate filtered image.

The experimental results show a strong improvement of

the quality of the filtered image w.r.t. the one obtained

from a static Gaussian filter, especially for noise level with

𝜎2
n ≤ 1; 000.These enhancements allow to increase the

precision of all the modules, composing an image

processing chain, that receive in input the filtered image

(e.g., edge detector).

Figure 12: Laplacian edge extraction – (a) Noisy image in

input (σ
2
n = 1500) (b) Edge extracted from noisy image

(c) Edge extracted From the image filtered by a static 11 x

11 filter (d) Edge extracted from image filtered by AIDI

REFERENCES
[1] S.-C. Tai and S.-M. Yang, “A fast method for image noise

estimation using laplacian operator and adaptive edge detection,” in
Proc. Of 3rd international Symposium on Communications, Control

and Signal Processing (ISCCSP), pp. 1077 – 1081, 2008.

[2] F. Russo, “A method for estimation and filtering of gaussian noise
in images,” IEEE Transactions on Instrumentation and

Measurement, vol. 52, no. 4, pp. 1148 – 1154, 2003.

[3] J. Tian and L. Chen, “Image noise estimation using a variation-
adaptive evolutionary approach,” IEEE Signal Processing Letters,

vol. 19, no. 7, pp. 395 – 398, 2012.

[4] G. Deng and L. Cahill, “An adaptive gaussian filter for noise
reduction and edge detection,” in Proc. of Nuclear Science

Symposium and Medical Imaging Conference, pp. 1615 – 1619

vol.3, 1993.
[5] Z. Vasicek and L. Sekanina, “An area-efficient alternative to

adaptive median filtering in FPGAs,” in Proc. of International

Conference on Field Programmable Logic and Applications (FPL),
pp. 216 – 221, 2007

[6] Joginipelly, A. Varela, D. Charalampidis, R. Schott, and Z.

Fitzsimmons, “Efficient FPGA implementation of steerable
Gaussian smoothers,” in Proc. of 44th Southeastern Symposium on

System Theory (SSST), pp. 78 – 82, 2012.

[7] T. Q. Vinh, J. hyun Park, Y.-C. Kim, and S. H. Hong, “FPGA

implementation of real-time edge-preserving filter for video noise
reduction,” in Proc. of International Conference on Computer and

Electrical Engineering (ICCEE), pp. 611 – 614, 2008.

[8] R. Gonz´alez and R. Woods, Digital image processing 3rd edition.
Prentice Hall, 2007.

[9] “University of Oxford - Affine Covariant Regions Dataset.”

www.robots. ox.ac.uk/_vgg/data/data-aff.html.
[10] F.-X. Lapalme, A. Amer, and C. Wang, “FPGA architecture for

realtime video noise estimation,” in Proc. of International

Conference on Image Processing, pp. 3257 – 3260, 2006.

http://www.ijireeice.com/

