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Abstract—Ball and beam system is a benchmark system to study various control algorithms. It consists of a beam that 

can be tilted by a DC servo motor and a ball rolling back and forth on the top of the beam. The main reason for its 

acceptance in labs across the globe is its property that it is open loop unstable. It can serve as a conventional tool for 

implementation of many classical and modern control system design method. 

In the paper, the theory of H-infinity control is used to design a control system for the ball and beam system. The 

theory of Robust control is extended to design a robust PID controller. Controller parameter values for PID controller 

i.e. gains are found from the robust controller designed. 
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I. INTRODUCTION 

This In this paper, the problem of controlling the ball 

and beam system is considered. The significance of the 

ball and beam system is that it is a simple system which is 

open-loop unstable. This research is devoted to the 

problem of synthesizing proportional-integral-derivative 

(PID) controllers for robust stability and performance of 

the ball and beam system. 

Robust control considers the design of decision or 

control rules that fare well across a range of alternative 

models. Thus robust control is inherently about model 

uncertainty, particularly focusing on the implications of 
model uncertainty for decisions [1]. Robust control allows 

policymakers to formulate policies that guard against 

model misspecification. The precision with which 

economic models can be expressed mathematically belies 

the fact that they cannot claim to be anything more than 

approximations to an unknown, and possibly unknowable, 

data-generating process. This unfortunate reality means 

that economic decisions are inevitably made in situations 

where important aspects of the environment are cloaked, 

hidden behind a cloud of uncertainty. While such 

uncertainty is hardly welcome, it need not render decision 
makers powerless, as its effects can in principle be 

mitigated through the application of robust control 

methods. Robust control provides a set of tools to assist 

decision makers confronting uncertainty who are either 

unable or unwilling to specify a probability distribution 

over possible specification errors [2]. 

A basic desideratum for robust control in practice is that 

the system remains stable in the face of perturbations, and 

since instability may be equated with infinite loss, 

minimizing the worst case outcomes will insure stability. 

In robust PID controller design, the result from the robust 

control is used to find the set of all parameters KI, KP, KD 
that simultaneously places all the roots into specific region 

in the complex plane [3]. 

II. MATHEMATICAL MODELLING 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 1 Ball and Beam system [4] 

 
 

 

The fig.1 shows the basic schematic diagram of a 

ball and beam arrangement. The ball and beam system 

is one of the most enduringly popular and important 

laboratory models for teaching control systems 

engineering. The ball and beam system is widely used 

because it is very simple to understand as a system, 

and yet the control techniques that can be studied. It 

has a very important property- it is open loop unstable. 

The control job is to automatically regulate the 

position of the ball on the beam by changing the angle of 

the beam. This is a difficult control task because the ball 

does not stay in one place on the beam but moves with 

an acceleration that is proportional to the tilt of the 

beam. In control technology the system is open loop 

unstable because the system output increses without limit 

for a fixed input. 
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Fig. 2 Ball dynamics 

 

The figure 2 shows the ball dynamics of ball and 

beam system. Various parameters that are taken into 

consideration for the modelling of system are: 

Mass of the ball (m) = 0.011kg 

Radius of the ball (R) = .015m 

Gravitational constant (g) = -

9.8ms-2 Length of the beam = 

0.4m 

Radius of the gear (d) = 

0.04m Ball position co-

ordinate = r Beam angle = 

α 

Servo gear angle = θ  
Also the moment of inertia of the ball is given by: 

 

 

 

 
 

Now Lagrange‟s equation for motion of the ball is: 
 

 
 

 
Then linearize the equation about the beam angle „α‟ 

equal to zero. Again „α‟ being very small, the 
equation which relates beam angle to the gear can be 

approximated by 
 

 

 

From this we get the following equation: 

 
 

 
Taking Laplace transform of the above equation and 

rearranging we find the transfer function for the gear angle 
θ(s) to ball position R(s). 

 
 

 

 

 

 

Substituting the values in 3, we get 
 

 

 

 
This is the final function for the model 

III. DESIGN OF ROBUST RID CONTROLLER 

H-infinity control criterion is applied to design the 

PID controller for the ball and beam system. The robust 

stability and performance of the general system is 

analysed. Based on that the internal stability of the 

system is checked and controller is designed. The 

design method proposes a method based on for H-infinity 

design of PID controller for ball and beam system. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Unity feedback control loop with disturbance. 

 

 

 
The figure 3 shows a unity feedback control loop where C 

is the controller and P is the plant. Let Q represent 

the controller of internal model control structure. 

The unity feedback loop can be equivalent to an 

internal model control structure through  

 

 

 

 

So far, most of design methods are developed 

aiming at integrator/dead time processes for PID 

controllers, as well as Smith predictors. This limits the 

use of controllers. 

As considered earlier the ball and beam plant 

transfer function of the plant P(s) without considering 

the uncertainty, 

 

 
The actual plant transfer function of the plant is  

With an uncertain time delay 

 

𝑃  (𝑠) = 𝑒−𝜏𝑠
0.7

𝑠2
 

Using first order Taylor formula we approximate time 

delay as (1- 𝜏s), we obtain the new plant transfer function 

as: 
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𝑃 =
0.7(1 − 𝜏𝑠)

𝑠2
 

 

Under the nominal condition, the sensitivity of closed loop 

system can be expressed as 

𝑆 =
1

1 + 𝑃𝐶
= 1 − 𝑃𝑄 

Where Q(s) is defined as: 

𝑄 𝑠 =
𝐶(𝑠)

1 + 𝐶 𝑠 𝑃(𝑠)
 

Now we regard it as the nominal process model for 

developing the analytical design formula of the controller 

C(s). In fact, the introduced model error can be regarded 

as a part of the process uncertainty. According to the 

robust control theory [8], the controller C(s) can ensure the 

closed-loop system if and only if 

 ∆𝑚  𝑠 𝑇(𝑠) ∞ =  ∆𝑚 (𝑠)
𝐶 𝑠 𝑃(𝑠)

1 + 𝐶 𝑠 𝐺(𝑠)
 
∞

< 1 

 ∆𝑚 (𝑠)   defines the multiplicative uncertainty of the 

process. 

The controller structure and parameters are derived from 

an optimal performance criterion simultaneously. We are 

designing the controller in terms of H-infinity optimal 

criterion min 𝑊 𝑠 𝑆(𝑠) ∞, where W(s) is a weight 

function that is used for normalizing the system input r(s) 

as a unit impulse signal.  H(s) denotes the transfer function 

matrix from r and d to y and u. i.e. 

𝐻 =  
𝑃𝑄 𝑃(1 − 𝑃𝑄)
𝑄 −𝑃𝑄

  

The closed-loop system is said to be internal stable if all 

the transfer functions in H(s) are stable. 

Actually the system can be said internally stable if and 

only if Q(s), Q(s)*P(s) and P(s)*(l-Q(s)*P(s)) (i.e. 

P(s)*S(s)) are stable and proper transfer functions. In view 

of that P(s) is unstable here, construct Q1(s) to let Q(s) = 

sQ1(s) so that Q1(s) stability can ensure the stability of 

Q(s) and Q(s)*P(s). At the same time, if S(s) (i.e. 1-

Q(s)*P(s)) is made stable and possesses at least one zero at 

s=0, the closed-loop system is surely to be internally 

stable. 

In process control W(s) can be selected as 1/s, which 

implies the system input is a unit step signal. Note that 

P(s) has a zero s=1/τ in the right half plane. In terms of the 

well-known maximum modulus theorem [6], there is 

 𝑊 𝑠 𝑆(𝑠) ∞ =  𝑊 𝑠 (1 − 𝑃(𝑠)𝑄(𝑠) ∞  ≥   𝑊(1
𝜏 )  

Minimizing the left-hand side the inequality yields 

𝑚𝑖𝑛 𝑊(𝑠)(1 − 𝑃(𝑠)𝑄(𝑠) ) ∞ =  𝑊 
1

𝜏
   

By the analysis of the above equation we obtain the 

optimal Qim(s) i.e. 

𝑄𝑖𝑚  𝑠 =
𝑊 𝑠 − 𝜏

𝑊 𝑠 . 𝑠𝑃(𝑠)
 

Therefore optimal Q(s) can be obtained as follows: 

𝑄𝑖𝑚  𝑠 =
𝑠2

𝑘
 

Obviously Qim(s) is improper and cannot be realized in 

practice. By employing a low-pass filter J(s), the 

suboptimal Q(s) can be obtained as Q(s)=Qim(s)J(s). 

In fact, most control systems in chemical industry aim at 

the process constant value output, which requires that the 

closed-loop system output gradually reach the set point 

value 

lim
𝑠→0

𝑆(𝑠) = lim
𝑠→0

1 − 𝑃 𝑠 𝑄(𝑠) = 0 

„s‟ tends  to zero means t tends to infinity (final value 

theorem), so that the process results in constant output[12] 

The sensitivity function S(s) = 1-Q(s).P(s) should possess 

at least 3 zeros at s=0 to reject the load disturbance 

injected at the process input side. Thus we select Jc(s) in 

form of 

𝐽𝑐 𝑠 =
𝑎𝑠2 + 𝑏𝑠 + 1

(𝜆𝑐𝑠 + 1)4
 

Where 𝜆𝑐  is the tuning parameter. 

Considering that S(s) should be composed of those terms 

that s3 or s with index over 3, we can figure out 

 𝑎 = 6𝜆𝑐
2 + 4𝜆𝑐𝜏 + 𝜏2, 𝑏 = 4𝜆𝑐 + 𝜏. 

Therefore Q(s) is obtained as 

𝑄 𝑠 = 𝑄𝑖𝑚  𝑠 𝐽𝑐 𝑠  

 

𝑄 𝑠 =
𝑠2  6𝜆𝑐

2 + 4𝜆𝑐𝜏 + 𝜏2 𝑠2 +  4𝜆𝑐 + 𝜏 𝑠 + 1 

𝑘(𝜆𝑐𝑠+ 1)4
 

And C(s) is in form of  

𝐶 𝑠 =
𝑄(𝑠)

1 − 𝑄 𝑠 𝑃(𝑠)

=
1

𝑘
.
 6𝜆𝑐

2 + 4𝜆𝑐𝜏 + 𝜏2 𝑠2 +  4𝜆𝑐 + 𝜏 𝑠 + 1

𝜆𝑐
4𝑠2 + (4𝜆𝑐

3 + 6𝜆𝑐
2𝜏 + 4𝜆𝑐𝜏

2 + 𝜏3)𝑠
 

This is PID controller. Suppose that the PID controller 

structure is given by 

𝐶 𝑠 = 𝑘𝑐  1 +
1

𝑇𝑖𝑠
+

𝑇𝑑𝑠

𝑇𝑓𝑠 + 1
  

The parameters can be written as 

𝑘𝑐 =
𝑇𝑖

𝑘(4𝜆𝑐
3 + 6𝜆𝑐

2𝜏 + 4𝜆𝑐𝜏
2 + 𝜏3)

 

𝑇𝑓 =
𝜆𝑐

4

4𝜆𝑐
3 + 6𝜆𝑐

2 + 4𝜆𝑐𝜏
2 + 𝜏3

 

𝑇𝑑 =
6𝜆𝑐

2 + 4𝜆𝑐𝜏 + 𝜏2

𝑇𝑖
− 𝑇𝑓  
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𝑇𝑖 = 4𝜆𝑐 + 𝜏 − 𝑇𝑓  

In ideal situation, the set point filter F(s) is employed for 

the ideal optimal closed-loop transfer function 𝑇𝑖𝑛  𝑠 =

𝑒−𝜏𝑠 , which requires the filter form of  

𝐹𝑖𝑛  𝑠 =
(𝜆𝑐𝑠+ 1)4

 6𝜆𝑐
2 + 4𝜆𝑐𝜏 + 𝜏2 𝑠2 +  4𝜆𝑐 + 𝜏 𝑠 + 1

 

So that𝑇𝑖𝑛  𝑠 = 𝐹𝑖𝑛  𝑠 𝑄 𝑠 𝑃 𝑠 = 𝑒−𝜏𝑠 . It is the ideal 

optimal closed-loop transfer function since the closed-loop 

system output can accurately track the set point value just 

after the process time delay 𝜏.  However F(s) is not a 

proper function that can be physically realized. The low-

pass filter J(s) added will roll off it at high frequency. For 

simplicity we select𝐽𝑓(𝑠) in form of  

𝐽𝑓 𝑠 =
1

 𝜆𝑓𝑠+ 1 
2 

Where, 𝜆𝑓 is the tuning parameter. Hence f(s) is obtained 

as  

𝐹 𝑠 

=
(𝜆𝑐𝑠+ 1)4

  6𝜆𝑐
2 + 4𝜆𝑐𝜏 + 𝜏2 𝑠2 +  4𝜆𝑐 + 𝜏 𝑠 + 1 (𝜆𝑓𝑠+ 1)2

 

Generally we prefer to let 𝜆𝑓= 𝜆𝑐  so that F(s) can be 

simplified as 

 

𝐹 𝑠 =
(𝜆𝑐𝑠 + 1)2

  6𝜆𝑐
2 + 4𝜆𝑐𝜏 + 𝜏2 𝑠2 +  4𝜆𝑐 + 𝜏 𝑠 + 1 

 

Now we have the controller and the PID values. Consider 

the same time delay value we used in the previous control 

problem. i.e. 𝜏 =0.1. 

In the proposed method [12] take 𝜆𝑓= 𝜆𝑐=2.5 𝜏. Hence we 

get 𝜆𝑐 = 0.25. By substituting these values in above 

equations we obtain the following results: 

𝑇𝑓 = 0.036 , 𝑇𝑖 = 1.064, 𝑇𝑑 = 0.456,  𝐾𝑐 = 13.694 and 

𝐹 𝑠 =
 0.25𝑠 + 1 2

0.485𝑠2 + 1.1𝑠 + 1
 

Further studies on the plant response to the controllers 

found above were done successfully and the results are 

discussed in the following chapter. Step response was 

given as input and response of the system with both 

controllers with and without filter has been studied. 

 

IV. RESULTS AND CONCLUSION 

From the H-infinity synthesis using maximum 

modulus theorem a robust controller was designed then 

PID controller parameters are obtained from the 
controller and their values also are found. 

Furthermore H-infinity PID controller response is 

obtained with the help of MATLAB commands. The 

output response obtained is given in following figures 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Fig 4 System response for a unit step input 

 

 

From figure 4 we can see the system instability clearly. 

Figure 5 and figure 6 shows the responses of the 

systems with robust controller and robust PID controller  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Step response of plant using robust controller with filter. 
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Fig. 6 Step response of plant using robust PID controller with filter. 

 

 

Comparisons of the Results from Various Controllers 

 

We have discussed about the results obtained by using different 

controllers. It‟s clearly observable from the step responses that 

controllers behaved differently with the plant. Thus a comparison of the 

results we obtained from all the controllers must be proper to complete 

our study about the controllers and results. 

 

 

Controller 

Type 
 

Rise 

time(sec

) 
 

Settling 

time 

(sec) 
 

Overshoo
t (%) 

 

Peak 
amplitud

e 
 

Robust 
Controller 

 

5.922 
 

10 
 

3.43 
 

1.03 
 

Robust PID 
controller 

 

1.32 
 

3.71 
 

3.45 
 

1.03 
 

 

 

 

Comparison of the response parameters for both robust and robust 

PID controllers is given in the table 1. From the table and the graph it‟s 

evident that both the controllers showed very good control performance. 
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