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Abstract: In this paper, the evaluation of load reduction through customer baseline load calculation is investigated. 

Moreover, the impact of accuracy of this calculation on the peak time rebate program offered to residential customers is 

investigated. In a hypothetical case, this program is offered to residential customers and its economic performance is 

evaluated with respect to the customer baseline load accuracy performance. For the purpose of this analysis, two 

popular methods of High5of10 (commonly known as NYISO method) and regression, and their adjusted forms are 

selected to compute the customer baseline load. Then, this calculation is utilized to examine the performance of a 

hypothetical case of peak time rebate program offered to 300 residential customers collected by the Irish Commission 
for Energy Regulation smart metering trial dataset. Based on the results of the case study, this hypothetical utility pays 

over 50 percent of its revenue as a rebate just because of the inaccuracy of the customer baseline load calculation 

methods. This loss would increase if the aforementioned methods get adjusted for the morning consumption. In the end, 

it is discussed that peak time rebate programs can cause an unfair redistribution of the utility’s revenue. Moreover, it is 

argued that such random distribution of rebates can cause a financial loss to the customers eventually. 

 

Keywords: Demand Response (DR), Peak Time Rebate (PTR), Percent Accuracy Metrics, Percent Bias Metrics, 

Customer Baseline Load (CBL). 

 

I. INTRODUCTION 

 
The electricity markets are developing steadily over many years of restructuring and competition and as a result, many 

points of inefficiencies are detected and resolved on the supply side [1-3]. With the advance of new components in the 

power network such as solar cells and wind turbines the traditional one-way direction supply has changed. Plug-in 

electric vehicles (PHEVs) are being used in power grids in recent years [4].  They can be used as both energy consumers 

and suppliers. 

However, due to overcoming conflicting interests of different stock-holders in the electricity market, the demand-side is 

still plagued with many inefficiencies [5]. Recent studies suggest that demand response (DR) programs can provide a 

reasonable response to such challenges. These programs can open up various possibilities to system operators as well as 

utilities in hopes of improving both economic and technical indices of their systems [6-7]. In [8] An Optimal security 

constrained Demand Response in Home Energy Management System is performed, using the Genetic Algorithm. 

Genetic algorithm can easily solve nonlinear constrained problems [9-10]. 
 

Although DR programs look highly promising in theory, a host of problems make them difficult to implement in 

practice. These problems root in diversity of customers, loads and heterogeneity in types of DR programs [11-13]. As a 

result, due to such complications, policy makers are concerned about the way load aggregators compensate customers 

financially. Utilities conventionally offer electricity at a flat rate. This flat rate reflects the average cost-of-service plus a 

premium that compensate the retailer for the risks associated with buying variable price electricity and selling it at a 

fixed rate. DR programs offer a different pricing structure in order to affect the customers’ decision regarding their 

consumption.  As one of the solutions to the abovementioned issues, decentralized methods for interconnection of the 

DRs have been developed. For example, in [14], Hamidi et al provided a thorough literature review on different control 

methods for DR interconnection and suggested a new decentralized method for controlling the DRs in all operation 
modes of smart grids. However, decentralized methods inherently are not able to find the global optimum points.  

Many DR programs rely on customer baseline (CBL) to compensate customers financially for their load reduction. CBL 

is a counterfactual consumption level, i.e. the amount of electricity that customers would have consumed in the absence 
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of DR event. CBL is also a basis to measure DR programs’ performance. A well-designed baseline could benefit all 

stakeholders by aligning their incentives, actions and interests. However, authors in [15] show that, in practice, because 
of the complicated nature of forecasting and limited availability of the information about customers’ future plans and 

other relevant parameters, designing such CBL is not an easy task [16].  

An extensive review of CBL calculation methods has been presented by authors in [17]. Their paper examines 

empirically numerous methods used by utilities and ISOs within the US. For carrying out such task, they employ real 

data from several hundred commercial and industrial customers in California State, and in order to evaluate the 

performance of the methods, they utilize accuracy and bias metrics. These metrics are employed by this paper as well, 

and they are elaborated in the future sections.  

Moreover, an industrial working group from California State tries to examine methods for CBL estimation in [18]. This 

study is part of the broader evaluation of California’s 2004 DR programs, which targeted the industrial and commercial 

customers. The methods examined in this study are 3-day, 10-day and prior-day CBL calculation methods. According to 

the results, 10-Day CBL calculation method with same day adjustment is the most accurate approach. 

In another attempt to evaluate CBL calculation methods, the authors in [18-19] evaluate the methods’ performance on 
non-residential buildings in California. This work which is conducted in Lawrence Berkeley National Lab (LBNB) on 

sample data from 32 sites in California, and it employs a statistical analysis to evaluate the performance of different CBL 

calculation models for non-residential buildings participating in DR program with emphasis on the importance of 

weather effects. According to the results, applying the morning adjustment could significantly reduce the bias and 

improve the accuracy of all CBL models. 

The effect of CBL accuracy on residential customers’ decisions in DR programs are assessed by the authors in [20]. In 

their study, different CBL methods are compared and ranked based on their accuracy and biases. Moreover, the study 

explains how CBL will affect customers’ decision and participation in a DR event and how it affects both customers and 

utility profit.  

In this paper, two CBL calculation methods and their adjusted forms are evaluated on real data collected from residential 

customers. The details of the data will be described in the following sections. The accuracy and bias metrics are utilized 
to evaluate the performance of the CBL calculations, and they, also, would be elaborated in future. Moreover, an 

economic case is introduced to evaluate the economic performance of Peak Time Rebate (PTR) program. PTR program 

is selected as a prominent example of a DR program that relies heavily on CBL calculation methods for its efficient 

performance. PTR is one of the popular DR programs in electricity industry. This program is frequently employed by 

utilities for their industrial customers. The performance of this program strongly hinges on the performance of CBL. 

Although it is employed successfully for industrial customers, its performance for residential customers is untested. PTR 

program is extremely appealing from the policy point of view as it requires a minimal revision to status quo and could 

provide a huge positive impact if it works correctly. However, it is vulnerable to many implementation deficiencies. The 

author in [21] reviews some of these practical issues including opportunities for gaming and problems with CBL 

methods. Moreover, the authors in [22] studied behavioral aspects of customers’ engagement in the PTR program. It is 

shown that the reward mechanism which PTR employs to incent the customers for load reduction is another source of 

inefficiency in this DR program.  
 

In this work, the CBL for residential customers are studied whereas previous works in this area [17-20] and [24] focus on 

industrial and commercial customers. Industrial customers as opposed to residential customers have a high degree of 

predictability due to their pre-scheduled loads. In past, because utilities were interested in the aggregated loads of 

residential customers, a few studies have been done to analyze these customers in the individual level. However, since 
DR programs need to deal with the customers in the individual level, recently, researcher have shown interest to this 

topic. The authors in [25-26] have explored the CBL performances exclusively for the residential customers. Findings for 

industrial customers could not be generalized to residential customers, and CBL calculation methods must be revisited. 

What distinguishes this paper from the previous studies is that in this paper, the authors go beyond analyzing accuracy 

and bias metrics of CBLs for residential customers and try to explain, first, what are the underlying mechanism of the 

error in CBL calculation methods, and second, how these metrics translate into financial losses for utility and customers. 

In order to carry out this analysis, an economic performance of a hypothetical case of PTR program offered to residential 

customers is assessed. This case employs a real data from 300 customers collected by Irish Commission for Energy 

Regulation (CER) smart metering trial dataset. 
 

The rest of the paper is organized as follows. An overview of CBL calculation methods is provided in section II. 

Afterwards, in section III, first, the dataset is introduced, then, for the purpose of the error analysis, two metrics of 

accuracy and bias are introduced. Afterwards, the signal processing analysis by using DFT is performed on the dataset. 
The error metrics are then applied to baseline loads calculated for a dataset and the results are presented. In section IV, 

a case study for an economic analysis of PTR is introduced. The results of the case study as well as discussions are 

presented in section V. The paper then concludes in section VI. 
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II. CBL CALCULATION 

 
In this paper, two well-established methods of HighXofY and regression are selected for CBL calculation. Based on 

many works in the literature, these two methods are two of the best methods for calculating CBL for large industrial 

and residential customers. The algorithm and mathematical presentation of these methods are provided in [26].  

In HighXofY methods, the subset of X days out of Y admissible days would be selected to calculate the CBL for the 

event day by using the average of these X days. However, the conditions on the event day are often different from the 

selected prior days. For this reason, X of Y baseline methods could be adjusted by the event day data. The same 

procedure can be followed for regression methods as well. The adjustment is defined by time frame of adjustment and 

it can be either multiplicative or additive. For the purpose of illustration, the concept of adjustment is shown through an 

example adjustment in Fig. 1. 

 In what follows, each of the aforementioned choice of adjustments will be elaborated.  
 

bi
+ d, t = a+ d, t + bi d, t  (1) 

bi
× d, t = a× d, t + bi(d, t) (2) 

Where: 

a+(d, t): Additive adjustment 

a×(d, t) Multiplicative adjustment 

a+ d, t  and a×(d, t) can be calculated as follows: 

a+ d, t =
 (l d, t − i − b(d, t − i))
t2
i=t1

t2 − t1
 (3) 

a× d, t =
 l d, t − i 
t2
i=t1

 b(d, t − i)t2
i=t1

 (4) 

Where: 

𝑡1 The starting hour of the period used for adjustment 

𝑡2 The last hour of the period used for adjustment 
C  A set of customers 

T  Timeslot division within a day  

𝑙 𝑑, 𝑡 − 𝑖  Actual load of customer  

𝑏(𝑑, 𝑡 − 𝑖)  Predicted baseline of customer  

 

As previously discussed, the difference between actual load and the estimated baseline in the adjustment time frame 

can be employed for adjustment purposes in two ways.  Multiplicative adjustment uses the percentage change and 

applies it to the estimated baseline. On the other hand, the additive adjustment uses the absolute change. These 

adjustments are shown mathematically in (3) and (4). Time frame of adjustment is normally 2-4 hours before the start 

of the event. It is reported that the choice of multiplicative or additive adjustment does not change the outcome 
significantly [17], so in this work, the additive adjustment is used for adjusting CBL methods. 

 

 
Fig. 1 Example baseline adjustment 
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III. ERROR ANALYSIS 

 
In this section, the dataset employed for the analysis of “classic” metrics of accuracy and bias is introduced and the 

metrics are defined. Afterwards, these metrics are applied to CBL calculations and the results are presented.  

A. Dataset 

In this paper, the Irish CER smart metering trial dataset [27] has been employed. This dataset contains measurements of 

around 5000 customers for the course of one and a half year from July 2009 to December 2010. In this paper, the data for 

300 customers for the last three months of experiment (92 days) are used. Dec 22nd is selected as an event day due to 

high electricity consumption.  
 

B. Error Metrics 

The hourly accuracy and bias of each baseline is analyzed in the following subsection. Let C be the set of all 300 

customers, D be the set of all days in the data set, and T be the set of hourly timeslots in a day. Mean absolute error 

(MAE) is utilized for measuring baseline accuracy as shown in (5). 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
    𝑏𝑖 𝑑, 𝑡 − 𝑙𝑖(𝑑, 𝑡) 𝑡∈𝑇𝑑∈𝐷𝑖∈𝐶

 𝐶 .  𝐷 .  𝑇 
 (5) 

 

The lower the MAE, the higher the accuracy. Baseline bias is defined as shown in (4). 

bias =
   (bi d, t − li(d, t))t∈Td∈Di∈C

 C .  D .  T 
 (6) 

 

It is worth mentioning that the difference between accuracy and bias, as expressed in (5) and (6) is the value of the 

difference between CBL and the actual consumption, which MAE uses the absolute value, while bias uses the real value.  

According to (6), baseline methods with positive bias overestimate the customers’ actual consumption and vice versa.  
 

C. Signal processing 

Before starting to calculate the CBL, first, the consumption load is analyzed by a standard signal processing procedure. 

The rationale behind this subsection is to see the recurring patterns inside the signal. For this purpose, the load is 

decomposed to its underlying components by Discrete Fourier Transform (DFT). Then it is divided into two parts: the 

part that has frequencies within the day (less than 24 hours), and the part that has frequencies beyond one day (more than 
24 hours). The former is called high frequency load, and the latter is called low frequency loads. Figures 2 and 3 show 

these signals for a random customer. The original is normalized for better comparison. By comparing these two figures, 

it is understood that the high frequency signal is as big as low frequency signal in magnitude. It means that the random 

and high frequency components of the signal are as significant as the predictable and low frequency components of the 

signal. It is a sign that it is very hard to calculate the CBL without using any other features from customers’ 

characteristics. For this subsection, an index is defined as randomness level index as in (7).  

r =
 abs(f high (t))T
t=1

 abs(f low (t))T
t=1

 (6) 

 

Where r is the randomness level, T is the number of hours in the signal (i.e. 2208 hours), and f high  is the high frequency 

signal, and f low  is the low frequency signal. The average of randomness level for all 300 customers is 1.03, which 
basically means close to 50% of the signal is unpredictable and random. However, it is worth mentioning that this 

randomness level is defined around one day. There are some other ways to select this benchmark. For example, some 

researchers believe that 8 hours is a better benchmark, because most of the residential customers follow the cycle of 8 

hours work, 8 hours rest, and 8 hours sleep. However, in this paper, one day (24 hours) is selected for simplicity.  
 

D. Analysis 

In this part, CBL for all the customers is calculated. In order to observe the details and challenges of CBL calculation, 

the CBL is calculated for one random customer. Fig. 4 illustrates the actual load and the CBL for the customer. As 

shown in Fig. 4, although NYISO and regression are two effective CBL calculation methodologies for the industrial 

sector, they show lukewarm results in the residential sector, and in almost all the hours in the event day, the difference 

between the estimation and the actual load is significant. This observation will be confirmed by the results of the error 
analysis.  Moreover, in figures 5 and 6, it is illustrated how that particular customer is going to be rewarded at event 

hours under NYISO and regression methods, respectively. When actual data is less than CBL at event hours (red area), 

the customer is rewarded for kW difference. However, when CBL is less than actual data at event hours (green area), no 

action is going to be taken by utility and the customer is still charged with the base price. The yellow area represents 

non-event hours. The average of accuracy MAE and bias of NYISO and regression methods for event hours for all 

customers are shown in Tables I. According to the results, adjustment does not improve the outcome of employed CBL 
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methods for residential customers. In order to see the financial impact of these accuracy and biases, in the next section, a 

hypothetical case of a PTR program is offered to the dataset in order to investigate how these metrics translate into 
financial losses for the utility.  
 

IV. CASE STUDY 
 

For economic analysis of PTR program, the accuracy of CBLs employed for payment settlement must be taken into 
consideration. In this section, a case of PTR program is introduced and its economic performance is analyzed. This PTR 

program pays $0.35/kWh as a reward for load reduction and a base price of $0.097/kWh as fixed tariff. The event starts 

from 3:00 P.M. and ends at 9:00 P.M.  
 

TABLE I ACCURACY “MAE” AND BIAS FOR EVENT HOURS 

 NYISO Adjusted NYISO Regression Adjusted Regression 

Accuracy MAE (kWh/hr) 1.44 1.68 1.40 1.45 

Bias (kWh/hr) +0.12 +0.72 -0.46 -0.14 
 

 
Fig. 2  The low frequency signal of the electricity consumption for one random customer in the dataset. 

 
Fig. 3 The high frequency signal of the electricity consumption for one random customer in the dataset. 

 
Fig. 4 Actual data vs. CBL for one random customer in the dataset 
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Fig. 5 Difference between NYISO CBL and actual data, red is rebate hours 

 
Fig. 6 Difference between Regression CBL and actual data, red is rebate hours 

 

V. RESULTS AND DISCUSSION 

 

In this paper, the data is free from DR event. Therefore, if the CBL is 100% accurate, the load reduction must be zero. 

On the other hand, if any load reduction is observed, it can be attributed to the inaccuracy of the CBL method. In this 

dataset and for the case study, the utility revenue from the total of 300 customers on the event day is $1465.5 for selling 
1.51 MWh. Table II lists the load reductions under NYISO, adjusted NYISO, regression and adjusted regression CBL 

methods. It also shows how much rebate this utility must pay to these customers on the event day. For the illustration 

purpose, the results of this table are shown in Fig. 7.   

As discussed earlier, all the rebate money is incurred because of CBL inaccuracy. According to the results, in this PTR 

program for residential customers, inaccuracy of CBLs costs this hypothetical utility over half of its revenue on the 

event day. As is shown in this table, the value of the load reduction as a percentage of consumption on event day is 

always above 14%. In most of DR programs, the intention is to induce customers to reduce their elastic demand during 

peak time, and since the elastic demand during peak time consists a small portion of the total load of a household 

demand [28], an error with this magnitude, disables the CBL to distinguish between the real demand reduction and load 

reduction. It is worth reminding that this load reduction is just an inaccuracy error, and ideally it must be zero. 

According to the signal processing analysis of the load signal, the high error in this order of magnitude was expected. 
However, the acceptable performance of CBL calculation methods for customers from different sectors (e.g. large 

industrial and commercial customers) can be attributed to the different nature of the personal and professional 

activities. As discussed earlier, according to the findings of multitudes of successful PTR programs offered to industrial 

customers, adjustment improves the results of CBL methods significantly, but in this case, the adjustment deteriorates 

the outcome of these methods.  

It is worth discussing that the utilities, due to their obligation to serve, must make sure that they have enough electricity 

to serve in any situation. DR programs can help the utilities in emergency situations. One of these situations is peak 

time of some special days when electricity in the wholesale market is either very expensive or unavailable. DR 
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programs can help to relieve part of this pressure. Utilities, in response to such pressures, might accept any available 

program that induces customers to lower their peak consumption regardless of its damage to their revenue. 
 However, the utilities reflect their cost-of-service into their retail rates. Therefore, ultimately the customers are the one 

who feel most of the aforementioned financial losses. Moreover, this loss of revenue redistributes among the customers 

randomly. In other words, this program rewards and punishes the customers haphazardly. This random redistribution of 

the loss cast a shadow on the fairness, and ultimately on the performance of the program.   

 

TABLE II LOAD REDUCTION AND “PTR” PAYMENT SETTLEMENT 
 

 NYISO Adjusted NYISO Regression Adjusted Regression 

Load reduction as a percentage of 

consumption on event day (%) 
22.7 43.9 14.4 23.9 

Rebate as a percent of utility revenue (%) 81.9 158.7 52.1 86.5 

 

 
Fig. 7 Load reduction as a percentage of consumption on event day (%) and rebate as a percent of utility revenue (%) for 

NYISO, regression, and their adjusted form. 

 

VI. CONCLUSION 

 

In this paper, the impact of accuracy of CBL on PTR programs offered to the residential customers was investigated. 

Previous studies in this area focused on industrial and commercial customers. For the purpose of analysis, High5of10 

(NYISO) and regression methods and their adjusted forms are selected to compute the CBL. The calculated baselines are 
utilized later to examine the economic performance of PTR program.  

The key conclusions of this study are: 

 From signal processing analysis of the loads, it is understood that the residential customers have a significant high 

frequency components that are hard to predict.  

 The sum of the absolute value of high frequency components of the residential customers’ loads are almost equal to 

the low frequency components (r=1.03). 

 For the 300 customers and just on an event day, the utility pays about 81.9% and 52.1% of its revenue as a rebate just 

because of the inaccuracy of NYISO and regression CBL calculation methods, respectively.  

 The additive adjustment did not improve the results in this case study. Conversely, it had a negative impact on the 

accuracy of each CBL method. 

 The PTR program in the absence of an accurate CBL calculation methods can cause a significant loss to the 
customers and cause unfair redistribution of the utility’s revenue.  

 

Based on presented results, it could be concluded that PTR programs may be very inefficient for the residential 

customers. It is worth emphasizing that the inefficiency stems from the failure of CBL calculation methods to predict 

residential customers’ load profile on event days accurately.  

In future work, the authors plan to use a dataset with longer span of time and multiple events in different times of a year 

to investigate the weakly and seasonal cyclic components of residential customers’ electricity consumption. Also, it is 

intended to study the performance of CBL calculation methods in the presence of a real DR event. Finding the baseline 

load accurately in the presence of a real DR program is another chief concern in measurement, verification and 

evaluation of CBL calculation methods.   
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